Properties

Label 2-450-1.1-c1-0-0
Degree $2$
Conductor $450$
Sign $1$
Analytic cond. $3.59326$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 3·11-s + 4·13-s + 2·14-s + 16-s − 3·17-s + 5·19-s − 3·22-s + 6·23-s − 4·26-s − 2·28-s + 2·31-s − 32-s + 3·34-s − 2·37-s − 5·38-s + 3·41-s + 4·43-s + 3·44-s − 6·46-s + 12·47-s − 3·49-s + 4·52-s + 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 0.904·11-s + 1.10·13-s + 0.534·14-s + 1/4·16-s − 0.727·17-s + 1.14·19-s − 0.639·22-s + 1.25·23-s − 0.784·26-s − 0.377·28-s + 0.359·31-s − 0.176·32-s + 0.514·34-s − 0.328·37-s − 0.811·38-s + 0.468·41-s + 0.609·43-s + 0.452·44-s − 0.884·46-s + 1.75·47-s − 3/7·49-s + 0.554·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(3.59326\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.031229189\)
\(L(\frac12)\) \(\approx\) \(1.031229189\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.06356630052318700046867394716, −10.08927395051771743893684804550, −9.150350739841772685069628447120, −8.696166163424621427674216809504, −7.34146793172562160046139993443, −6.60865865069333408239607336365, −5.66248146017224201443960953748, −4.04063298891995369242558301329, −2.90142231580611624816334042439, −1.13669044249807591949724917468, 1.13669044249807591949724917468, 2.90142231580611624816334042439, 4.04063298891995369242558301329, 5.66248146017224201443960953748, 6.60865865069333408239607336365, 7.34146793172562160046139993443, 8.696166163424621427674216809504, 9.150350739841772685069628447120, 10.08927395051771743893684804550, 11.06356630052318700046867394716

Graph of the $Z$-function along the critical line