Properties

Label 2-4446-1.1-c1-0-59
Degree $2$
Conductor $4446$
Sign $-1$
Analytic cond. $35.5014$
Root an. cond. $5.95831$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 3·7-s − 8-s − 10-s + 4·11-s + 13-s + 3·14-s + 16-s + 3·17-s − 19-s + 20-s − 4·22-s − 2·23-s − 4·25-s − 26-s − 3·28-s − 4·29-s − 8·31-s − 32-s − 3·34-s − 3·35-s + 37-s + 38-s − 40-s − 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.13·7-s − 0.353·8-s − 0.316·10-s + 1.20·11-s + 0.277·13-s + 0.801·14-s + 1/4·16-s + 0.727·17-s − 0.229·19-s + 0.223·20-s − 0.852·22-s − 0.417·23-s − 4/5·25-s − 0.196·26-s − 0.566·28-s − 0.742·29-s − 1.43·31-s − 0.176·32-s − 0.514·34-s − 0.507·35-s + 0.164·37-s + 0.162·38-s − 0.158·40-s − 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4446\)    =    \(2 \cdot 3^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(35.5014\)
Root analytic conductor: \(5.95831\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4446,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.033392300041384382264664293095, −7.23458889747962575651296066005, −6.53572069080007095288393890464, −6.04195854869870819744741686032, −5.26893580918868684044099399400, −3.81497238059810570995938897834, −3.47546022166629546985070789532, −2.21769652204214886580824677712, −1.35814928467585276435922401808, 0, 1.35814928467585276435922401808, 2.21769652204214886580824677712, 3.47546022166629546985070789532, 3.81497238059810570995938897834, 5.26893580918868684044099399400, 6.04195854869870819744741686032, 6.53572069080007095288393890464, 7.23458889747962575651296066005, 8.033392300041384382264664293095

Graph of the $Z$-function along the critical line