Properties

Label 4446.e
Number of curves $1$
Conductor $4446$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 4446.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4446.e do not have complex multiplication.

Modular form 4446.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 3 q^{7} - q^{8} - q^{10} + 4 q^{11} + q^{13} + 3 q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 4446.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4446.e1 4446g1 \([1, -1, 0, -9009, -343139]\) \(-110931033861649/6497214464\) \(-4736469344256\) \([]\) \(9360\) \(1.1882\) \(\Gamma_0(N)\)-optimal