L(s) = 1 | − 2·3-s + 3·5-s + 7-s + 3·9-s − 3·11-s − 4·13-s − 6·15-s − 3·17-s − 2·21-s − 6·23-s + 5·25-s − 4·27-s + 6·29-s + 2·31-s + 6·33-s + 3·35-s + 2·37-s + 8·39-s + 43-s + 9·45-s − 21·47-s − 5·49-s + 6·51-s − 6·53-s − 9·55-s − 11·61-s + 3·63-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.34·5-s + 0.377·7-s + 9-s − 0.904·11-s − 1.10·13-s − 1.54·15-s − 0.727·17-s − 0.436·21-s − 1.25·23-s + 25-s − 0.769·27-s + 1.11·29-s + 0.359·31-s + 1.04·33-s + 0.507·35-s + 0.328·37-s + 1.28·39-s + 0.152·43-s + 1.34·45-s − 3.06·47-s − 5/7·49-s + 0.840·51-s − 0.824·53-s − 1.21·55-s − 1.40·61-s + 0.377·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18766224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18766224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.050646541593140090993045003027, −8.011814690192581646452999176922, −7.39979168675635253853202772206, −6.92218591005918888564761396205, −6.54603966746615509061132086353, −6.47611431909828961903283960411, −5.86707677960731794791175033387, −5.73314161461945930709778273001, −5.11416435410115028082791672044, −4.97926718386849109759038590926, −4.62410838392360118694727898643, −4.31141594372513825832256987184, −3.62568028186427221679741725420, −2.96717633585607887382958404266, −2.52967651786622776664757083508, −2.24399097707562370008520601385, −1.47019775057367440361027638531, −1.37400670346746014911813620070, 0, 0,
1.37400670346746014911813620070, 1.47019775057367440361027638531, 2.24399097707562370008520601385, 2.52967651786622776664757083508, 2.96717633585607887382958404266, 3.62568028186427221679741725420, 4.31141594372513825832256987184, 4.62410838392360118694727898643, 4.97926718386849109759038590926, 5.11416435410115028082791672044, 5.73314161461945930709778273001, 5.86707677960731794791175033387, 6.47611431909828961903283960411, 6.54603966746615509061132086353, 6.92218591005918888564761396205, 7.39979168675635253853202772206, 8.011814690192581646452999176922, 8.050646541593140090993045003027