L(s) = 1 | − 2·3-s − 5-s − 3·7-s + 3·9-s + 10·11-s − 7·13-s + 2·15-s + 6·21-s − 2·23-s − 8·25-s − 4·27-s + 2·29-s − 3·31-s − 20·33-s + 3·35-s + 4·37-s + 14·39-s − 11·41-s − 12·43-s − 3·45-s + 7·47-s + 4·49-s − 6·53-s − 10·55-s + 4·59-s + 22·61-s − 9·63-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.447·5-s − 1.13·7-s + 9-s + 3.01·11-s − 1.94·13-s + 0.516·15-s + 1.30·21-s − 0.417·23-s − 8/5·25-s − 0.769·27-s + 0.371·29-s − 0.538·31-s − 3.48·33-s + 0.507·35-s + 0.657·37-s + 2.24·39-s − 1.71·41-s − 1.82·43-s − 0.447·45-s + 1.02·47-s + 4/7·49-s − 0.824·53-s − 1.34·55-s + 0.520·59-s + 2.81·61-s − 1.13·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18766224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18766224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.926584267335432294050700089063, −7.912069622306193162538993962861, −7.18702722173009862577202806593, −7.02565772756627155708677218242, −6.58388120030459427408005586895, −6.57003662479641473770226616176, −6.05558770022509648004147460360, −5.76621254304529187989379157894, −5.05742543115746198249776712126, −5.01954784442764497612405997137, −4.32387271824506428673386199609, −4.02861857005196511936148559161, −3.57212964062101671597589518006, −3.56056304914675305225346909773, −2.62307707956609267512539936772, −2.14000463313993038180456815451, −1.51622222916509532555449374980, −1.07583316147788223595744838060, 0, 0,
1.07583316147788223595744838060, 1.51622222916509532555449374980, 2.14000463313993038180456815451, 2.62307707956609267512539936772, 3.56056304914675305225346909773, 3.57212964062101671597589518006, 4.02861857005196511936148559161, 4.32387271824506428673386199609, 5.01954784442764497612405997137, 5.05742543115746198249776712126, 5.76621254304529187989379157894, 6.05558770022509648004147460360, 6.57003662479641473770226616176, 6.58388120030459427408005586895, 7.02565772756627155708677218242, 7.18702722173009862577202806593, 7.912069622306193162538993962861, 7.926584267335432294050700089063