Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 17 x + 213 x^{2} - 1207 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.306662112421$, $\pm0.355673142481$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1098725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4031$ | $26116849$ | $128935932821$ | $646009165860509$ | $3255109948404749776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $5179$ | $360241$ | $25421739$ | $1804155300$ | $128099003383$ | $9095114560615$ | $645753568760259$ | $45848501376207541$ | $3255243553899868254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=46 x^6+42 x^5+x^4+18 x^3+22 x^2+55 x+40$
- $y^2=36 x^6+67 x^5+12 x^4+54 x^3+5 x^2+66 x+52$
- $y^2=7 x^6+40 x^5+27 x^4+11 x^3+15 x^2+12 x+51$
- $y^2=21 x^6+37 x^5+21 x^4+11 x^3+16 x^2+58 x+31$
- $y^2=17 x^6+57 x^5+52 x^4+27 x^3+60 x^2+10 x+17$
- $y^2=49 x^6+34 x^5+24 x^4+60 x^3+26 x^2+35 x+14$
- $y^2=3 x^6+53 x^5+2 x^4+17 x^3+21 x^2+12 x+4$
- $y^2=70 x^6+49 x^5+41 x^4+66 x^3+23 x^2+67 x+7$
- $y^2=45 x^6+51 x^5+21 x^4+40 x^3+3 x^2+3 x+21$
- $y^2=3 x^6+19 x^4+41 x^3+36 x^2+39 x+50$
- $y^2=53 x^6+54 x^5+68 x^4+41 x^3+50 x^2+18 x+66$
- $y^2=51 x^6+70 x^5+57 x^4+59 x^3+47 x^2+52 x+69$
- $y^2=37 x^6+35 x^5+31 x^4+40 x^3+x^2+3 x+65$
- $y^2=25 x^6+28 x^5+70 x^4+19 x^3+33 x^2+40 x+23$
- $y^2=49 x^6+67 x^5+21 x^4+3 x^3+18 x^2+4 x+31$
- $y^2=30 x^6+32 x^5+65 x^4+21 x^3+62 x^2+65 x+57$
- $y^2=51 x^6+43 x^5+29 x^4+65 x^3+61 x^2+9 x+18$
- $y^2=9 x^6+9 x^5+21 x^4+65 x^3+44 x^2+33 x+60$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.1098725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.r_if | $2$ | (not in LMFDB) |