Properties

Label 2.71.ar_if
Base field $\F_{71}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 - 17 x + 213 x^{2} - 1207 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.306662112421$, $\pm0.355673142481$
Angle rank:  $2$ (numerical)
Number field:  4.0.1098725.1
Galois group:  $D_{4}$
Jacobians:  $18$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4031$ $26116849$ $128935932821$ $646009165860509$ $3255109948404749776$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $55$ $5179$ $360241$ $25421739$ $1804155300$ $128099003383$ $9095114560615$ $645753568760259$ $45848501376207541$ $3255243553899868254$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.1098725.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.r_if$2$(not in LMFDB)