Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 117 x^{2} - 316 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.337042504413$, $\pm0.585324809075$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1764225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $336$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6039$ | $40334481$ | $243280293696$ | $1517099583484089$ | $9468420814620355599$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $6460$ | $493432$ | $38949844$ | $3077103436$ | $243086434846$ | $19203896878564$ | $1517108897244004$ | $119851597132471528$ | $9468276079551817900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=66 x^6+14 x^5+77 x^4+x^3+12 x^2+74 x+78$
- $y^2=27 x^6+36 x^5+58 x^4+35 x^3+5 x^2+13 x+50$
- $y^2=70 x^6+38 x^5+58 x^4+56 x^3+4 x^2+70 x+47$
- $y^2=67 x^6+76 x^5+46 x^4+78 x^3+32 x^2+75 x+54$
- $y^2=49 x^6+27 x^5+20 x^4+10 x^3+37 x^2+57 x+75$
- $y^2=39 x^6+65 x^5+38 x^4+37 x^3+14 x^2+49 x+5$
- $y^2=12 x^6+5 x^5+21 x^4+68 x^3+63 x^2+5 x+77$
- $y^2=3 x^6+51 x^5+37 x^4+11 x^3+56 x^2+56 x+21$
- $y^2=55 x^6+35 x^5+53 x^4+47 x^3+10 x^2+21 x+52$
- $y^2=8 x^6+57 x^5+39 x^4+36 x^3+56 x^2+36 x+38$
- $y^2=18 x^6+32 x^5+60 x^4+71 x^3+11 x^2+26 x+18$
- $y^2=66 x^6+6 x^5+78 x^4+10 x^3+58 x^2+57 x+46$
- $y^2=20 x^6+30 x^5+34 x^4+73 x^3+65 x^2+37 x+36$
- $y^2=77 x^6+15 x^5+49 x^4+35 x^3+13 x^2+3 x+74$
- $y^2=69 x^6+47 x^5+36 x^4+18 x^3+63 x^2+54 x+27$
- $y^2=2 x^6+18 x^5+71 x^4+x^3+67 x^2+15 x+16$
- $y^2=23 x^6+21 x^5+37 x^4+32 x^3+32 x^2+13 x+9$
- $y^2=47 x^6+64 x^5+32 x^4+10 x^3+46 x^2+11 x+72$
- $y^2=12 x^6+52 x^5+77 x^4+24 x^3+63 x^2+24 x+45$
- $y^2=63 x^6+35 x^5+55 x^4+26 x^3+67 x^2+64 x+48$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.1764225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.e_en | $2$ | (not in LMFDB) |