Properties

Label 2-4080-1.1-c1-0-56
Degree $2$
Conductor $4080$
Sign $-1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 3·7-s + 9-s + 11-s − 6·13-s − 15-s + 17-s + 19-s − 3·21-s − 6·23-s + 25-s − 27-s − 5·29-s + 2·31-s − 33-s + 3·35-s − 11·37-s + 6·39-s − 9·41-s + 45-s − 5·47-s + 2·49-s − 51-s − 3·53-s + 55-s − 57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s + 0.301·11-s − 1.66·13-s − 0.258·15-s + 0.242·17-s + 0.229·19-s − 0.654·21-s − 1.25·23-s + 1/5·25-s − 0.192·27-s − 0.928·29-s + 0.359·31-s − 0.174·33-s + 0.507·35-s − 1.80·37-s + 0.960·39-s − 1.40·41-s + 0.149·45-s − 0.729·47-s + 2/7·49-s − 0.140·51-s − 0.412·53-s + 0.134·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.982393337556492219002104333941, −7.31706918834567317308530137799, −6.64453879555839533878075930448, −5.66319503664164599650087198443, −5.09754573678134694976380027318, −4.54051358927375399882161974333, −3.46329854129581577195971176587, −2.17492015147028769328847304195, −1.55599823806811570026361624687, 0, 1.55599823806811570026361624687, 2.17492015147028769328847304195, 3.46329854129581577195971176587, 4.54051358927375399882161974333, 5.09754573678134694976380027318, 5.66319503664164599650087198443, 6.64453879555839533878075930448, 7.31706918834567317308530137799, 7.982393337556492219002104333941

Graph of the $Z$-function along the critical line