Properties

Label 4080.p
Number of curves $1$
Conductor $4080$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 4080.p1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4080.p do not have complex multiplication.

Modular form 4080.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 3 q^{7} + q^{9} + q^{11} - 6 q^{13} - q^{15} + q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 4080.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.p1 4080j1 \([0, -1, 0, -2840, -81813]\) \(-158384129218816/93270234375\) \(-1492323750000\) \([]\) \(6720\) \(1.0385\) \(\Gamma_0(N)\)-optimal