L(s) = 1 | + 2·3-s + 2·5-s − 7-s + 3·9-s + 7·11-s − 2·13-s + 4·15-s + 2·17-s − 7·19-s − 2·21-s + 3·25-s + 4·27-s + 11·29-s + 14·33-s − 2·35-s + 11·37-s − 4·39-s + 3·41-s − 8·43-s + 6·45-s + 17·47-s − 5·49-s + 4·51-s + 9·53-s + 14·55-s − 14·57-s − 6·59-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.894·5-s − 0.377·7-s + 9-s + 2.11·11-s − 0.554·13-s + 1.03·15-s + 0.485·17-s − 1.60·19-s − 0.436·21-s + 3/5·25-s + 0.769·27-s + 2.04·29-s + 2.43·33-s − 0.338·35-s + 1.80·37-s − 0.640·39-s + 0.468·41-s − 1.21·43-s + 0.894·45-s + 2.47·47-s − 5/7·49-s + 0.560·51-s + 1.23·53-s + 1.88·55-s − 1.85·57-s − 0.781·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.651439208\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.651439208\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.629294784759904751423681599103, −8.465539062175428705303054869182, −7.80080084117607326486211796799, −7.74205612318810657670186338013, −6.89374863860195173218563781468, −6.85093448846986111948053621903, −6.45442722009474455830055561969, −6.27267211867829412130172921043, −5.68934042195116440685465664256, −5.36313727671195023067343601645, −4.51798696291463088924994511595, −4.46102048702170279135878254534, −4.07988887387666294104250695958, −3.60624628769672871015199610679, −3.08923817997205572921977951897, −2.70585435802875810372614594035, −2.06701810120027231198504403006, −2.05688727313117556416488292186, −1.04939055655392916419770537390, −0.882719482990355179571335541345,
0.882719482990355179571335541345, 1.04939055655392916419770537390, 2.05688727313117556416488292186, 2.06701810120027231198504403006, 2.70585435802875810372614594035, 3.08923817997205572921977951897, 3.60624628769672871015199610679, 4.07988887387666294104250695958, 4.46102048702170279135878254534, 4.51798696291463088924994511595, 5.36313727671195023067343601645, 5.68934042195116440685465664256, 6.27267211867829412130172921043, 6.45442722009474455830055561969, 6.85093448846986111948053621903, 6.89374863860195173218563781468, 7.74205612318810657670186338013, 7.80080084117607326486211796799, 8.465539062175428705303054869182, 8.629294784759904751423681599103