| L(s) = 1 | + 2-s − 3-s − 2·5-s − 6-s + 5·7-s − 8-s − 2·10-s + 3·11-s − 5·13-s + 5·14-s + 2·15-s − 16-s + 8·17-s + 5·19-s − 5·21-s + 3·22-s + 4·23-s + 24-s + 3·25-s − 5·26-s + 27-s + 4·29-s + 2·30-s − 4·31-s − 3·33-s + 8·34-s − 10·35-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 0.577·3-s − 0.894·5-s − 0.408·6-s + 1.88·7-s − 0.353·8-s − 0.632·10-s + 0.904·11-s − 1.38·13-s + 1.33·14-s + 0.516·15-s − 1/4·16-s + 1.94·17-s + 1.14·19-s − 1.09·21-s + 0.639·22-s + 0.834·23-s + 0.204·24-s + 3/5·25-s − 0.980·26-s + 0.192·27-s + 0.742·29-s + 0.365·30-s − 0.718·31-s − 0.522·33-s + 1.37·34-s − 1.69·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.024769567\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.024769567\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58781777065658408086541356225, −11.49609631662168158332695502945, −10.71019029806201543855336521509, −10.41513631541863398691472256687, −9.655925829411925947797474293582, −9.383577281595628268269351009975, −8.711213230850735519341622482761, −8.017329282219072338940324245706, −7.88127892647357733272462422502, −7.37674679339913567309724890579, −6.91521316024092169532631252059, −6.17842300625523799904966333156, −5.47887409253854378312717854064, −5.12793525022361651353586049475, −4.66754358556719115491956771686, −4.43515130368606390189860790858, −3.28864928362008128579029329385, −3.20538254383081894545876644311, −1.80402139087837853590352056605, −0.982624931644370404091049194855,
0.982624931644370404091049194855, 1.80402139087837853590352056605, 3.20538254383081894545876644311, 3.28864928362008128579029329385, 4.43515130368606390189860790858, 4.66754358556719115491956771686, 5.12793525022361651353586049475, 5.47887409253854378312717854064, 6.17842300625523799904966333156, 6.91521316024092169532631252059, 7.37674679339913567309724890579, 7.88127892647357733272462422502, 8.017329282219072338940324245706, 8.711213230850735519341622482761, 9.383577281595628268269351009975, 9.655925829411925947797474293582, 10.41513631541863398691472256687, 10.71019029806201543855336521509, 11.49609631662168158332695502945, 11.58781777065658408086541356225