Properties

Label 2-384-1.1-c1-0-4
Degree $2$
Conductor $384$
Sign $1$
Analytic cond. $3.06625$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s + 9-s + 4·11-s − 6·13-s + 6·17-s + 2·21-s + 4·23-s − 5·25-s + 27-s − 4·29-s + 10·31-s + 4·33-s − 2·37-s − 6·39-s − 2·41-s − 8·43-s − 12·47-s − 3·49-s + 6·51-s + 12·53-s + 4·59-s − 2·61-s + 2·63-s − 4·67-s + 4·69-s − 4·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 1.45·17-s + 0.436·21-s + 0.834·23-s − 25-s + 0.192·27-s − 0.742·29-s + 1.79·31-s + 0.696·33-s − 0.328·37-s − 0.960·39-s − 0.312·41-s − 1.21·43-s − 1.75·47-s − 3/7·49-s + 0.840·51-s + 1.64·53-s + 0.520·59-s − 0.256·61-s + 0.251·63-s − 0.488·67-s + 0.481·69-s − 0.474·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $1$
Analytic conductor: \(3.06625\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.789565998\)
\(L(\frac12)\) \(\approx\) \(1.789565998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.69179794771208099164944938022, −10.12070860408780938514099192974, −9.634186835262726325802863954007, −8.503024042291174545390595385787, −7.67554775307177371631314255080, −6.80910210319960057293306406499, −5.36858848597467135489376840463, −4.36074490911347519116057298154, −3.06807634409715093203408940942, −1.59108885184574423909298130831, 1.59108885184574423909298130831, 3.06807634409715093203408940942, 4.36074490911347519116057298154, 5.36858848597467135489376840463, 6.80910210319960057293306406499, 7.67554775307177371631314255080, 8.503024042291174545390595385787, 9.634186835262726325802863954007, 10.12070860408780938514099192974, 11.69179794771208099164944938022

Graph of the $Z$-function along the critical line