L(s) = 1 | + 2·5-s − 2·7-s − 8·11-s − 2·13-s + 6·19-s + 2·23-s − 25-s + 2·29-s + 2·31-s − 4·35-s − 12·37-s − 12·41-s + 2·43-s − 2·47-s + 3·49-s + 6·53-s − 16·55-s − 28·59-s − 4·61-s − 4·65-s − 4·67-s − 20·71-s − 2·73-s + 16·77-s − 14·79-s − 6·83-s + 18·89-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s − 2.41·11-s − 0.554·13-s + 1.37·19-s + 0.417·23-s − 1/5·25-s + 0.371·29-s + 0.359·31-s − 0.676·35-s − 1.97·37-s − 1.87·41-s + 0.304·43-s − 0.291·47-s + 3/7·49-s + 0.824·53-s − 2.15·55-s − 3.64·59-s − 0.512·61-s − 0.496·65-s − 0.488·67-s − 2.37·71-s − 0.234·73-s + 1.82·77-s − 1.57·79-s − 0.658·83-s + 1.90·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10732176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10732176 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.337738487738014681335711182358, −8.184088296645891185267626658223, −7.53692710886065655935655547019, −7.38894253982369871605140801410, −7.10568527129737175282689633748, −6.58720921063941438349719820489, −6.03362920310515635499047521570, −5.84668565958769368590259303236, −5.29820245079504364250535064962, −5.19675108668668633859110348244, −4.73292263415156432634225485336, −4.34237360373598366363444728277, −3.41608628272698231614099771862, −3.19869750438025785505847286358, −2.78696056389891760719970121886, −2.50706249393881370898857710437, −1.71439641404488275988091424081, −1.36689829670193922323928913058, 0, 0,
1.36689829670193922323928913058, 1.71439641404488275988091424081, 2.50706249393881370898857710437, 2.78696056389891760719970121886, 3.19869750438025785505847286358, 3.41608628272698231614099771862, 4.34237360373598366363444728277, 4.73292263415156432634225485336, 5.19675108668668633859110348244, 5.29820245079504364250535064962, 5.84668565958769368590259303236, 6.03362920310515635499047521570, 6.58720921063941438349719820489, 7.10568527129737175282689633748, 7.38894253982369871605140801410, 7.53692710886065655935655547019, 8.184088296645891185267626658223, 8.337738487738014681335711182358