Properties

Label 2.37.m_ea
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 12 x + 104 x^{2} + 444 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.594270855772$, $\pm0.744393741071$
Angle rank:  $2$ (numerical)
Number field:  4.0.5974272.2
Galois group:  $D_{4}$
Jacobians:  $24$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1930$ $1964740$ $2531297290$ $3515666461200$ $4808992908302650$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $50$ $1434$ $49970$ $1875862$ $69349850$ $2565694986$ $94931823050$ $3512478427678$ $129961763620850$ $4808584260270714$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.5974272.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.am_ea$2$(not in LMFDB)