# Stored data for abelian variety isogeny class 2.37.m_ea, downloaded from the LMFDB on 15 October 2025. {"abvar_count": 1930, "abvar_counts": [1930, 1964740, 2531297290, 3515666461200, 4808992908302650, 6582871385806382980, 9012056161626737053210, 12337508309553262356480000, 16890056907002481532966412170, 23122483127392199447100916581700], "abvar_counts_str": "1930 1964740 2531297290 3515666461200 4808992908302650 6582871385806382980 9012056161626737053210 12337508309553262356480000 16890056907002481532966412170 23122483127392199447100916581700 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.594270855771599, 0.744393741070832], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 50, "curve_counts": [50, 1434, 49970, 1875862, 69349850, 2565694986, 94931823050, 3512478427678, 129961763620850, 4808584260270714], "curve_counts_str": "50 1434 49970 1875862 69349850 2565694986 94931823050 3512478427678 129961763620850 4808584260270714 ", "curves": ["y^2=5*x^6+20*x^5+33*x^4+29*x^3+10*x^2+29*x+12", "y^2=14*x^6+18*x^5+5*x^4+3*x^3+x^2+24*x+13", "y^2=21*x^6+19*x^5+22*x^4+16*x^3+18*x^2+31*x+25", "y^2=27*x^6+9*x^5+10*x^4+36*x^3+23*x^2+8*x+7", "y^2=7*x^6+16*x^5+15*x^4+24*x^3+29*x^2+22*x+27", "y^2=5*x^6+18*x^5+13*x^4+33*x^3+36*x^2+22*x+16", "y^2=31*x^6+15*x^5+17*x^4+4*x^3+x^2+x+3", "y^2=26*x^6+13*x^5+25*x^4+22*x^3+12*x^2+12*x+35", "y^2=28*x^6+32*x^5+34*x^4+26*x^3+35*x^2+33*x+25", "y^2=4*x^6+18*x^5+33*x^4+x^3+18*x^2+27*x+7", "y^2=27*x^6+20*x^5+15*x^4+15*x^3+27*x^2+5*x+5", "y^2=8*x^6+30*x^5+36*x^4+10*x^3+12*x^2+17*x+10", "y^2=21*x^6+18*x^5+17*x^4+20*x^3+28*x^2+20*x+17", "y^2=23*x^6+33*x^5+33*x^4+6*x^3+34*x^2+x+11", "y^2=12*x^6+22*x^5+23*x^4+35*x^3+31*x^2+7*x+9", "y^2=15*x^6+26*x^5+29*x^4+10*x^3+24*x^2+30*x+13", "y^2=36*x^6+6*x^5+29*x^4+21*x^2+27*x+26", "y^2=5*x^6+21*x^5+12*x^4+2*x^3+19*x^2+5*x+9", "y^2=30*x^6+4*x^5+31*x^4+5*x^3+30*x+21", "y^2=33*x^6+4*x^5+7*x^4+4*x^3+13*x^2+8*x+1", "y^2=32*x^6+32*x^5+23*x^4+4*x^3+27*x^2+29*x+11", "y^2=26*x^6+26*x^5+25*x^4+33*x^3+25*x^2+6*x+34", "y^2=14*x^6+34*x^5+29*x^4+26*x^3+17*x^2+10*x+32", "y^2=33*x^6+7*x^5+11*x^4+17*x^3+5*x^2+3*x+26"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.5974272.2"], "geometric_splitting_field": "4.0.5974272.2", "geometric_splitting_polynomials": [[730, -36, 50, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 24, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 24, "label": "2.37.m_ea", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.5974272.2"], "p": 37, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 12, 104, 444, 1369], "poly_str": "1 12 104 444 1369 ", "primitive_models": [], "q": 37, "real_poly": [1, 12, 30], "simple_distinct": ["2.37.m_ea"], "simple_factors": ["2.37.m_eaA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.5974272.2", "splitting_polynomials": [[730, -36, 50, 0, 1]], "twist_count": 2, "twists": [["2.37.am_ea", "2.1369.cm_ehm", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 10372, "zfv_singular_count": 0, "zfv_singular_primes": []}