Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 28 x^{2} + 289 x^{4}$ |
| Frobenius angles: | $\pm0.403999106167$, $\pm0.596000893833$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{6}, \sqrt{-62})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $14$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $318$ | $101124$ | $24135246$ | $6941555856$ | $2015991083118$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $18$ | $346$ | $4914$ | $83110$ | $1419858$ | $24132922$ | $410338674$ | $6976006654$ | $118587876498$ | $2015988265786$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=12 x^6+2 x^5+14 x^4+6 x^3+8 x^2+2 x+9$
- $y^2=2 x^6+6 x^5+8 x^4+x^3+7 x^2+6 x+10$
- $y^2=3 x^6+2 x^5+15 x^4+6 x^3+5 x^2+6 x+1$
- $y^2=9 x^6+6 x^5+11 x^4+x^3+15 x^2+x+3$
- $y^2=4 x^6+16 x^5+14 x^4+10 x^3+13 x^2+11$
- $y^2=12 x^6+14 x^5+8 x^4+13 x^3+5 x^2+16$
- $y^2=8 x^6+6 x^5+10 x^4+4 x^3+10 x^2+x+11$
- $y^2=7 x^6+x^5+13 x^4+12 x^3+13 x^2+3 x+16$
- $y^2=14 x^6+3 x^5+8 x^4+9 x^2+14 x+15$
- $y^2=8 x^6+9 x^5+7 x^4+10 x^2+8 x+11$
- $y^2=x^6+13 x^5+4 x^4+16 x^3+11 x^2+9 x+3$
- $y^2=3 x^6+5 x^5+12 x^4+14 x^3+16 x^2+10 x+9$
- $y^2=4 x^6+2 x^4+x^3+3 x^2+7 x+8$
- $y^2=12 x^6+6 x^4+3 x^3+9 x^2+4 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-62})\). |
| The base change of $A$ to $\F_{17^{2}}$ is 1.289.bc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-93}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.17.a_abc | $4$ | (not in LMFDB) |