Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x + 183 x^{2} + 1106 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.537709713008$, $\pm0.733435841254$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.31302720.1 |
Galois group: | $D_{4}$ |
Jacobians: | $156$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7545$ | $40026225$ | $242288299440$ | $1517151830957625$ | $9468295513869612225$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $6412$ | $491416$ | $38951188$ | $3077062714$ | $243087899902$ | $19203910521526$ | $1517108693204068$ | $119851596804591304$ | $9468276088004291452$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=19 x^6+44 x^5+63 x^4+37 x^3+66 x^2+26 x+32$
- $y^2=21 x^6+13 x^5+10 x^4+24 x^3+2 x^2+68 x+43$
- $y^2=47 x^6+22 x^5+56 x^4+57 x^3+8 x^2+57 x+42$
- $y^2=71 x^6+44 x^5+x^4+67 x^3+21 x^2+71 x+38$
- $y^2=6 x^6+62 x^5+9 x^4+54 x^2+14 x+31$
- $y^2=8 x^6+78 x^5+4 x^4+6 x^3+53 x^2+34 x+73$
- $y^2=66 x^6+58 x^5+61 x^4+4 x^3+59 x^2+19 x+65$
- $y^2=16 x^6+20 x^5+26 x^4+65 x^3+67 x^2+64$
- $y^2=6 x^6+56 x^5+44 x^4+41 x^3+63 x^2+42 x+60$
- $y^2=71 x^6+44 x^5+35 x^4+75 x^3+60 x^2+9 x+55$
- $y^2=76 x^6+66 x^5+70 x^4+22 x^3+43 x^2+43 x+32$
- $y^2=4 x^6+11 x^5+44 x^4+20 x^3+12 x^2+x+2$
- $y^2=22 x^6+55 x^5+65 x^4+61 x^3+15 x^2+78 x+14$
- $y^2=66 x^6+53 x^5+17 x^4+33 x^3+69 x^2+26 x+45$
- $y^2=17 x^6+6 x^5+9 x^4+59 x^3+6 x^2+11 x+71$
- $y^2=19 x^6+2 x^5+31 x^4+42 x^3+71 x^2+60 x+67$
- $y^2=26 x^6+69 x^5+20 x^4+43 x^3+5 x^2+73 x+60$
- $y^2=15 x^6+54 x^5+12 x^4+67 x^3+49 x^2+56 x+4$
- $y^2=2 x^6+25 x^5+35 x^4+78 x^3+57 x^2+73 x+58$
- $y^2=40 x^6+36 x^5+59 x^4+73 x^3+43 x^2+67 x+6$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.31302720.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.ao_hb | $2$ | (not in LMFDB) |