Properties

Label 2.5.ac_f
Base Field $\F_{5}$
Dimension $2$
Ordinary No
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 5 x^{2} - 10 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.219592142625$, $\pm0.605066734301$
Angle rank:  $2$ (numerical)
Number field:  4.0.83520.4
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 19 817 14668 412585 10465219 244720912 6066354523 152663463945 3810184219564 95257384994977

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 32 118 660 3344 15662 77648 390820 1950814 9754352

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 4.0.83520.4.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.c_f$2$2.25.g_bj