L(s) = 1 | + 2·3-s − 2·5-s + 3·9-s − 4·11-s − 4·15-s − 8·17-s + 8·19-s − 12·23-s + 3·25-s + 4·27-s − 4·29-s − 8·33-s − 4·37-s − 4·41-s − 8·43-s − 6·45-s − 4·47-s − 16·51-s − 12·53-s + 8·55-s + 16·57-s − 8·67-s − 24·69-s − 4·71-s − 8·73-s + 6·75-s − 20·79-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 9-s − 1.20·11-s − 1.03·15-s − 1.94·17-s + 1.83·19-s − 2.50·23-s + 3/5·25-s + 0.769·27-s − 0.742·29-s − 1.39·33-s − 0.657·37-s − 0.624·41-s − 1.21·43-s − 0.894·45-s − 0.583·47-s − 2.24·51-s − 1.64·53-s + 1.07·55-s + 2.11·57-s − 0.977·67-s − 2.88·69-s − 0.474·71-s − 0.936·73-s + 0.692·75-s − 2.25·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8643600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8643600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.361335215979670970569475964319, −8.285524153546110888381137033724, −7.72673085161866565159171812303, −7.69869618968846624167442836280, −7.08892776025129797945443556212, −7.00283509439708003039241775247, −6.14794912890750734565503182837, −6.14019359025795660043162292327, −5.23919646560027316425032398702, −5.11646495457411816432896149745, −4.46920918228590367970698165872, −4.24756305440851036397164499021, −3.63618284111658868687469611819, −3.42783310173165847766412567750, −2.72784758884602205655690429024, −2.61333741625950223822442628484, −1.66115422113308758966633808171, −1.62797282457114292265469852673, 0, 0,
1.62797282457114292265469852673, 1.66115422113308758966633808171, 2.61333741625950223822442628484, 2.72784758884602205655690429024, 3.42783310173165847766412567750, 3.63618284111658868687469611819, 4.24756305440851036397164499021, 4.46920918228590367970698165872, 5.11646495457411816432896149745, 5.23919646560027316425032398702, 6.14019359025795660043162292327, 6.14794912890750734565503182837, 7.00283509439708003039241775247, 7.08892776025129797945443556212, 7.69869618968846624167442836280, 7.72673085161866565159171812303, 8.285524153546110888381137033724, 8.361335215979670970569475964319