Properties

Label 2940.2.a.q.1.1
Level $2940$
Weight $2$
Character 2940.1
Self dual yes
Analytic conductor $23.476$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(1,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-2,0,0,0,2,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4760181943\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2940.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{9} -2.00000 q^{11} -2.82843 q^{13} -1.00000 q^{15} -1.17157 q^{17} +5.41421 q^{19} -7.41421 q^{23} +1.00000 q^{25} +1.00000 q^{27} +3.65685 q^{29} +4.24264 q^{31} -2.00000 q^{33} -10.4853 q^{37} -2.82843 q^{39} -2.00000 q^{41} +1.65685 q^{43} -1.00000 q^{45} -10.4853 q^{47} -1.17157 q^{51} -4.58579 q^{53} +2.00000 q^{55} +5.41421 q^{57} +2.82843 q^{59} -9.89949 q^{61} +2.82843 q^{65} -6.82843 q^{67} -7.41421 q^{69} -10.4853 q^{71} +4.48528 q^{73} +1.00000 q^{75} -10.0000 q^{79} +1.00000 q^{81} -4.82843 q^{83} +1.17157 q^{85} +3.65685 q^{87} -4.82843 q^{89} +4.24264 q^{93} -5.41421 q^{95} +4.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{17} + 8 q^{19} - 12 q^{23} + 2 q^{25} + 2 q^{27} - 4 q^{29} - 4 q^{33} - 4 q^{37} - 4 q^{41} - 8 q^{43} - 2 q^{45} - 4 q^{47} - 8 q^{51} - 12 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −1.17157 −0.284148 −0.142074 0.989856i \(-0.545377\pi\)
−0.142074 + 0.989856i \(0.545377\pi\)
\(18\) 0 0
\(19\) 5.41421 1.24211 0.621053 0.783769i \(-0.286705\pi\)
0.621053 + 0.783769i \(0.286705\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.41421 −1.54597 −0.772985 0.634424i \(-0.781237\pi\)
−0.772985 + 0.634424i \(0.781237\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.65685 0.679061 0.339530 0.940595i \(-0.389732\pi\)
0.339530 + 0.940595i \(0.389732\pi\)
\(30\) 0 0
\(31\) 4.24264 0.762001 0.381000 0.924575i \(-0.375580\pi\)
0.381000 + 0.924575i \(0.375580\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.4853 −1.72377 −0.861885 0.507104i \(-0.830716\pi\)
−0.861885 + 0.507104i \(0.830716\pi\)
\(38\) 0 0
\(39\) −2.82843 −0.452911
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −10.4853 −1.52944 −0.764718 0.644365i \(-0.777122\pi\)
−0.764718 + 0.644365i \(0.777122\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.17157 −0.164053
\(52\) 0 0
\(53\) −4.58579 −0.629906 −0.314953 0.949107i \(-0.601989\pi\)
−0.314953 + 0.949107i \(0.601989\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 5.41421 0.717130
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) −9.89949 −1.26750 −0.633750 0.773538i \(-0.718485\pi\)
−0.633750 + 0.773538i \(0.718485\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.82843 0.350823
\(66\) 0 0
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 0 0
\(69\) −7.41421 −0.892566
\(70\) 0 0
\(71\) −10.4853 −1.24437 −0.622187 0.782869i \(-0.713756\pi\)
−0.622187 + 0.782869i \(0.713756\pi\)
\(72\) 0 0
\(73\) 4.48528 0.524962 0.262481 0.964937i \(-0.415459\pi\)
0.262481 + 0.964937i \(0.415459\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.82843 −0.529989 −0.264994 0.964250i \(-0.585370\pi\)
−0.264994 + 0.964250i \(0.585370\pi\)
\(84\) 0 0
\(85\) 1.17157 0.127075
\(86\) 0 0
\(87\) 3.65685 0.392056
\(88\) 0 0
\(89\) −4.82843 −0.511812 −0.255906 0.966702i \(-0.582374\pi\)
−0.255906 + 0.966702i \(0.582374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.24264 0.439941
\(94\) 0 0
\(95\) −5.41421 −0.555487
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 11.6569 1.15990 0.579950 0.814652i \(-0.303072\pi\)
0.579950 + 0.814652i \(0.303072\pi\)
\(102\) 0 0
\(103\) 2.82843 0.278693 0.139347 0.990244i \(-0.455500\pi\)
0.139347 + 0.990244i \(0.455500\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.07107 0.490239 0.245119 0.969493i \(-0.421173\pi\)
0.245119 + 0.969493i \(0.421173\pi\)
\(108\) 0 0
\(109\) −4.34315 −0.415998 −0.207999 0.978129i \(-0.566695\pi\)
−0.207999 + 0.978129i \(0.566695\pi\)
\(110\) 0 0
\(111\) −10.4853 −0.995219
\(112\) 0 0
\(113\) −6.24264 −0.587258 −0.293629 0.955919i \(-0.594863\pi\)
−0.293629 + 0.955919i \(0.594863\pi\)
\(114\) 0 0
\(115\) 7.41421 0.691379
\(116\) 0 0
\(117\) −2.82843 −0.261488
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.1421 1.25491 0.627456 0.778652i \(-0.284096\pi\)
0.627456 + 0.778652i \(0.284096\pi\)
\(128\) 0 0
\(129\) 1.65685 0.145878
\(130\) 0 0
\(131\) 11.3137 0.988483 0.494242 0.869325i \(-0.335446\pi\)
0.494242 + 0.869325i \(0.335446\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −7.89949 −0.674899 −0.337450 0.941344i \(-0.609564\pi\)
−0.337450 + 0.941344i \(0.609564\pi\)
\(138\) 0 0
\(139\) −7.55635 −0.640921 −0.320461 0.947262i \(-0.603838\pi\)
−0.320461 + 0.947262i \(0.603838\pi\)
\(140\) 0 0
\(141\) −10.4853 −0.883020
\(142\) 0 0
\(143\) 5.65685 0.473050
\(144\) 0 0
\(145\) −3.65685 −0.303685
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.6569 −1.61035 −0.805176 0.593036i \(-0.797929\pi\)
−0.805176 + 0.593036i \(0.797929\pi\)
\(150\) 0 0
\(151\) 5.31371 0.432423 0.216212 0.976346i \(-0.430630\pi\)
0.216212 + 0.976346i \(0.430630\pi\)
\(152\) 0 0
\(153\) −1.17157 −0.0947161
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 0 0
\(157\) 10.1421 0.809431 0.404715 0.914443i \(-0.367371\pi\)
0.404715 + 0.914443i \(0.367371\pi\)
\(158\) 0 0
\(159\) −4.58579 −0.363677
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −18.1421 −1.42100 −0.710501 0.703696i \(-0.751532\pi\)
−0.710501 + 0.703696i \(0.751532\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 5.41421 0.414035
\(172\) 0 0
\(173\) −14.1421 −1.07521 −0.537603 0.843198i \(-0.680670\pi\)
−0.537603 + 0.843198i \(0.680670\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.82843 0.212598
\(178\) 0 0
\(179\) −10.4853 −0.783707 −0.391853 0.920028i \(-0.628166\pi\)
−0.391853 + 0.920028i \(0.628166\pi\)
\(180\) 0 0
\(181\) 24.2426 1.80194 0.900971 0.433880i \(-0.142856\pi\)
0.900971 + 0.433880i \(0.142856\pi\)
\(182\) 0 0
\(183\) −9.89949 −0.731792
\(184\) 0 0
\(185\) 10.4853 0.770893
\(186\) 0 0
\(187\) 2.34315 0.171348
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.9706 1.08323 0.541616 0.840626i \(-0.317813\pi\)
0.541616 + 0.840626i \(0.317813\pi\)
\(192\) 0 0
\(193\) 12.8284 0.923410 0.461705 0.887033i \(-0.347238\pi\)
0.461705 + 0.887033i \(0.347238\pi\)
\(194\) 0 0
\(195\) 2.82843 0.202548
\(196\) 0 0
\(197\) 13.0711 0.931275 0.465638 0.884976i \(-0.345825\pi\)
0.465638 + 0.884976i \(0.345825\pi\)
\(198\) 0 0
\(199\) 8.24264 0.584305 0.292153 0.956372i \(-0.405628\pi\)
0.292153 + 0.956372i \(0.405628\pi\)
\(200\) 0 0
\(201\) −6.82843 −0.481640
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −7.41421 −0.515323
\(208\) 0 0
\(209\) −10.8284 −0.749018
\(210\) 0 0
\(211\) −17.6569 −1.21555 −0.607774 0.794110i \(-0.707937\pi\)
−0.607774 + 0.794110i \(0.707937\pi\)
\(212\) 0 0
\(213\) −10.4853 −0.718440
\(214\) 0 0
\(215\) −1.65685 −0.112997
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.48528 0.303087
\(220\) 0 0
\(221\) 3.31371 0.222904
\(222\) 0 0
\(223\) 5.17157 0.346314 0.173157 0.984894i \(-0.444603\pi\)
0.173157 + 0.984894i \(0.444603\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −5.41421 −0.357781 −0.178891 0.983869i \(-0.557251\pi\)
−0.178891 + 0.983869i \(0.557251\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.72792 0.178712 0.0893561 0.996000i \(-0.471519\pi\)
0.0893561 + 0.996000i \(0.471519\pi\)
\(234\) 0 0
\(235\) 10.4853 0.683984
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −19.6569 −1.27150 −0.635748 0.771897i \(-0.719308\pi\)
−0.635748 + 0.771897i \(0.719308\pi\)
\(240\) 0 0
\(241\) 29.4142 1.89474 0.947368 0.320147i \(-0.103732\pi\)
0.947368 + 0.320147i \(0.103732\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −15.3137 −0.974388
\(248\) 0 0
\(249\) −4.82843 −0.305989
\(250\) 0 0
\(251\) 11.5147 0.726803 0.363401 0.931633i \(-0.381615\pi\)
0.363401 + 0.931633i \(0.381615\pi\)
\(252\) 0 0
\(253\) 14.8284 0.932255
\(254\) 0 0
\(255\) 1.17157 0.0733667
\(256\) 0 0
\(257\) −21.3137 −1.32951 −0.664756 0.747060i \(-0.731465\pi\)
−0.664756 + 0.747060i \(0.731465\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.65685 0.226354
\(262\) 0 0
\(263\) −17.0711 −1.05265 −0.526324 0.850284i \(-0.676430\pi\)
−0.526324 + 0.850284i \(0.676430\pi\)
\(264\) 0 0
\(265\) 4.58579 0.281703
\(266\) 0 0
\(267\) −4.82843 −0.295495
\(268\) 0 0
\(269\) −15.1716 −0.925027 −0.462514 0.886612i \(-0.653052\pi\)
−0.462514 + 0.886612i \(0.653052\pi\)
\(270\) 0 0
\(271\) 20.2426 1.22965 0.614826 0.788662i \(-0.289226\pi\)
0.614826 + 0.788662i \(0.289226\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 5.31371 0.319270 0.159635 0.987176i \(-0.448968\pi\)
0.159635 + 0.987176i \(0.448968\pi\)
\(278\) 0 0
\(279\) 4.24264 0.254000
\(280\) 0 0
\(281\) −2.97056 −0.177209 −0.0886045 0.996067i \(-0.528241\pi\)
−0.0886045 + 0.996067i \(0.528241\pi\)
\(282\) 0 0
\(283\) −8.48528 −0.504398 −0.252199 0.967675i \(-0.581154\pi\)
−0.252199 + 0.967675i \(0.581154\pi\)
\(284\) 0 0
\(285\) −5.41421 −0.320710
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.6274 −0.919260
\(290\) 0 0
\(291\) 4.00000 0.234484
\(292\) 0 0
\(293\) −3.65685 −0.213636 −0.106818 0.994279i \(-0.534066\pi\)
−0.106818 + 0.994279i \(0.534066\pi\)
\(294\) 0 0
\(295\) −2.82843 −0.164677
\(296\) 0 0
\(297\) −2.00000 −0.116052
\(298\) 0 0
\(299\) 20.9706 1.21276
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.6569 0.669669
\(304\) 0 0
\(305\) 9.89949 0.566843
\(306\) 0 0
\(307\) 1.65685 0.0945617 0.0472808 0.998882i \(-0.484944\pi\)
0.0472808 + 0.998882i \(0.484944\pi\)
\(308\) 0 0
\(309\) 2.82843 0.160904
\(310\) 0 0
\(311\) 8.68629 0.492554 0.246277 0.969199i \(-0.420793\pi\)
0.246277 + 0.969199i \(0.420793\pi\)
\(312\) 0 0
\(313\) 28.4853 1.61008 0.805042 0.593218i \(-0.202143\pi\)
0.805042 + 0.593218i \(0.202143\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.100505 0.00564493 0.00282246 0.999996i \(-0.499102\pi\)
0.00282246 + 0.999996i \(0.499102\pi\)
\(318\) 0 0
\(319\) −7.31371 −0.409489
\(320\) 0 0
\(321\) 5.07107 0.283039
\(322\) 0 0
\(323\) −6.34315 −0.352942
\(324\) 0 0
\(325\) −2.82843 −0.156893
\(326\) 0 0
\(327\) −4.34315 −0.240177
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −34.6274 −1.90329 −0.951647 0.307192i \(-0.900611\pi\)
−0.951647 + 0.307192i \(0.900611\pi\)
\(332\) 0 0
\(333\) −10.4853 −0.574590
\(334\) 0 0
\(335\) 6.82843 0.373077
\(336\) 0 0
\(337\) 33.7990 1.84115 0.920574 0.390568i \(-0.127721\pi\)
0.920574 + 0.390568i \(0.127721\pi\)
\(338\) 0 0
\(339\) −6.24264 −0.339054
\(340\) 0 0
\(341\) −8.48528 −0.459504
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 7.41421 0.399168
\(346\) 0 0
\(347\) 12.5858 0.675640 0.337820 0.941211i \(-0.390310\pi\)
0.337820 + 0.941211i \(0.390310\pi\)
\(348\) 0 0
\(349\) 29.2132 1.56375 0.781873 0.623437i \(-0.214264\pi\)
0.781873 + 0.623437i \(0.214264\pi\)
\(350\) 0 0
\(351\) −2.82843 −0.150970
\(352\) 0 0
\(353\) 30.2843 1.61187 0.805935 0.592005i \(-0.201663\pi\)
0.805935 + 0.592005i \(0.201663\pi\)
\(354\) 0 0
\(355\) 10.4853 0.556501
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.9706 1.42345 0.711726 0.702457i \(-0.247914\pi\)
0.711726 + 0.702457i \(0.247914\pi\)
\(360\) 0 0
\(361\) 10.3137 0.542827
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −4.48528 −0.234770
\(366\) 0 0
\(367\) −30.8284 −1.60923 −0.804615 0.593796i \(-0.797628\pi\)
−0.804615 + 0.593796i \(0.797628\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.68629 0.139091 0.0695455 0.997579i \(-0.477845\pi\)
0.0695455 + 0.997579i \(0.477845\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −10.3431 −0.532699
\(378\) 0 0
\(379\) 31.9411 1.64071 0.820353 0.571858i \(-0.193777\pi\)
0.820353 + 0.571858i \(0.193777\pi\)
\(380\) 0 0
\(381\) 14.1421 0.724524
\(382\) 0 0
\(383\) −3.85786 −0.197128 −0.0985638 0.995131i \(-0.531425\pi\)
−0.0985638 + 0.995131i \(0.531425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.65685 0.0842226
\(388\) 0 0
\(389\) 7.17157 0.363613 0.181807 0.983334i \(-0.441806\pi\)
0.181807 + 0.983334i \(0.441806\pi\)
\(390\) 0 0
\(391\) 8.68629 0.439285
\(392\) 0 0
\(393\) 11.3137 0.570701
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −28.2843 −1.41955 −0.709773 0.704430i \(-0.751203\pi\)
−0.709773 + 0.704430i \(0.751203\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 38.4853 1.92186 0.960932 0.276786i \(-0.0892693\pi\)
0.960932 + 0.276786i \(0.0892693\pi\)
\(402\) 0 0
\(403\) −12.0000 −0.597763
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 20.9706 1.03947
\(408\) 0 0
\(409\) −24.7279 −1.22272 −0.611359 0.791354i \(-0.709377\pi\)
−0.611359 + 0.791354i \(0.709377\pi\)
\(410\) 0 0
\(411\) −7.89949 −0.389653
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.82843 0.237018
\(416\) 0 0
\(417\) −7.55635 −0.370036
\(418\) 0 0
\(419\) −32.9706 −1.61072 −0.805359 0.592788i \(-0.798027\pi\)
−0.805359 + 0.592788i \(0.798027\pi\)
\(420\) 0 0
\(421\) −32.2843 −1.57344 −0.786720 0.617311i \(-0.788222\pi\)
−0.786720 + 0.617311i \(0.788222\pi\)
\(422\) 0 0
\(423\) −10.4853 −0.509812
\(424\) 0 0
\(425\) −1.17157 −0.0568296
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.65685 0.273115
\(430\) 0 0
\(431\) 38.4853 1.85377 0.926885 0.375344i \(-0.122476\pi\)
0.926885 + 0.375344i \(0.122476\pi\)
\(432\) 0 0
\(433\) 13.1716 0.632985 0.316493 0.948595i \(-0.397495\pi\)
0.316493 + 0.948595i \(0.397495\pi\)
\(434\) 0 0
\(435\) −3.65685 −0.175333
\(436\) 0 0
\(437\) −40.1421 −1.92026
\(438\) 0 0
\(439\) 24.7279 1.18020 0.590100 0.807330i \(-0.299088\pi\)
0.590100 + 0.807330i \(0.299088\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.5858 −0.978060 −0.489030 0.872267i \(-0.662649\pi\)
−0.489030 + 0.872267i \(0.662649\pi\)
\(444\) 0 0
\(445\) 4.82843 0.228889
\(446\) 0 0
\(447\) −19.6569 −0.929737
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 5.31371 0.249660
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.51472 0.445080 0.222540 0.974924i \(-0.428565\pi\)
0.222540 + 0.974924i \(0.428565\pi\)
\(458\) 0 0
\(459\) −1.17157 −0.0546843
\(460\) 0 0
\(461\) 11.4558 0.533552 0.266776 0.963759i \(-0.414042\pi\)
0.266776 + 0.963759i \(0.414042\pi\)
\(462\) 0 0
\(463\) −5.85786 −0.272238 −0.136119 0.990692i \(-0.543463\pi\)
−0.136119 + 0.990692i \(0.543463\pi\)
\(464\) 0 0
\(465\) −4.24264 −0.196748
\(466\) 0 0
\(467\) 29.9411 1.38551 0.692755 0.721173i \(-0.256397\pi\)
0.692755 + 0.721173i \(0.256397\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 10.1421 0.467325
\(472\) 0 0
\(473\) −3.31371 −0.152364
\(474\) 0 0
\(475\) 5.41421 0.248421
\(476\) 0 0
\(477\) −4.58579 −0.209969
\(478\) 0 0
\(479\) −33.9411 −1.55081 −0.775405 0.631464i \(-0.782454\pi\)
−0.775405 + 0.631464i \(0.782454\pi\)
\(480\) 0 0
\(481\) 29.6569 1.35224
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −20.2843 −0.919168 −0.459584 0.888134i \(-0.652001\pi\)
−0.459584 + 0.888134i \(0.652001\pi\)
\(488\) 0 0
\(489\) −18.1421 −0.820416
\(490\) 0 0
\(491\) −29.1127 −1.31384 −0.656919 0.753961i \(-0.728141\pi\)
−0.656919 + 0.753961i \(0.728141\pi\)
\(492\) 0 0
\(493\) −4.28427 −0.192954
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −30.2843 −1.35571 −0.677855 0.735196i \(-0.737090\pi\)
−0.677855 + 0.735196i \(0.737090\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) −32.8284 −1.46375 −0.731874 0.681440i \(-0.761354\pi\)
−0.731874 + 0.681440i \(0.761354\pi\)
\(504\) 0 0
\(505\) −11.6569 −0.518723
\(506\) 0 0
\(507\) −5.00000 −0.222058
\(508\) 0 0
\(509\) −38.4853 −1.70583 −0.852915 0.522050i \(-0.825168\pi\)
−0.852915 + 0.522050i \(0.825168\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.41421 0.239043
\(514\) 0 0
\(515\) −2.82843 −0.124635
\(516\) 0 0
\(517\) 20.9706 0.922284
\(518\) 0 0
\(519\) −14.1421 −0.620771
\(520\) 0 0
\(521\) −21.1127 −0.924964 −0.462482 0.886629i \(-0.653041\pi\)
−0.462482 + 0.886629i \(0.653041\pi\)
\(522\) 0 0
\(523\) −13.1716 −0.575953 −0.287976 0.957638i \(-0.592982\pi\)
−0.287976 + 0.957638i \(0.592982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.97056 −0.216521
\(528\) 0 0
\(529\) 31.9706 1.39002
\(530\) 0 0
\(531\) 2.82843 0.122743
\(532\) 0 0
\(533\) 5.65685 0.245026
\(534\) 0 0
\(535\) −5.07107 −0.219241
\(536\) 0 0
\(537\) −10.4853 −0.452473
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.2843 1.55998 0.779991 0.625790i \(-0.215223\pi\)
0.779991 + 0.625790i \(0.215223\pi\)
\(542\) 0 0
\(543\) 24.2426 1.04035
\(544\) 0 0
\(545\) 4.34315 0.186040
\(546\) 0 0
\(547\) 27.1127 1.15926 0.579628 0.814881i \(-0.303198\pi\)
0.579628 + 0.814881i \(0.303198\pi\)
\(548\) 0 0
\(549\) −9.89949 −0.422500
\(550\) 0 0
\(551\) 19.7990 0.843465
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 10.4853 0.445075
\(556\) 0 0
\(557\) −31.6985 −1.34311 −0.671554 0.740956i \(-0.734373\pi\)
−0.671554 + 0.740956i \(0.734373\pi\)
\(558\) 0 0
\(559\) −4.68629 −0.198209
\(560\) 0 0
\(561\) 2.34315 0.0989277
\(562\) 0 0
\(563\) −38.4853 −1.62196 −0.810981 0.585073i \(-0.801066\pi\)
−0.810981 + 0.585073i \(0.801066\pi\)
\(564\) 0 0
\(565\) 6.24264 0.262630
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.4853 1.44570 0.722849 0.691006i \(-0.242832\pi\)
0.722849 + 0.691006i \(0.242832\pi\)
\(570\) 0 0
\(571\) 20.2843 0.848870 0.424435 0.905458i \(-0.360473\pi\)
0.424435 + 0.905458i \(0.360473\pi\)
\(572\) 0 0
\(573\) 14.9706 0.625404
\(574\) 0 0
\(575\) −7.41421 −0.309194
\(576\) 0 0
\(577\) −2.82843 −0.117749 −0.0588745 0.998265i \(-0.518751\pi\)
−0.0588745 + 0.998265i \(0.518751\pi\)
\(578\) 0 0
\(579\) 12.8284 0.533131
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.17157 0.379848
\(584\) 0 0
\(585\) 2.82843 0.116941
\(586\) 0 0
\(587\) 16.8284 0.694584 0.347292 0.937757i \(-0.387101\pi\)
0.347292 + 0.937757i \(0.387101\pi\)
\(588\) 0 0
\(589\) 22.9706 0.946486
\(590\) 0 0
\(591\) 13.0711 0.537672
\(592\) 0 0
\(593\) −2.97056 −0.121986 −0.0609932 0.998138i \(-0.519427\pi\)
−0.0609932 + 0.998138i \(0.519427\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.24264 0.337349
\(598\) 0 0
\(599\) −14.0000 −0.572024 −0.286012 0.958226i \(-0.592330\pi\)
−0.286012 + 0.958226i \(0.592330\pi\)
\(600\) 0 0
\(601\) 19.7574 0.805919 0.402960 0.915218i \(-0.367981\pi\)
0.402960 + 0.915218i \(0.367981\pi\)
\(602\) 0 0
\(603\) −6.82843 −0.278075
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 21.4558 0.870866 0.435433 0.900221i \(-0.356595\pi\)
0.435433 + 0.900221i \(0.356595\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.6569 1.19979
\(612\) 0 0
\(613\) 37.3137 1.50709 0.753543 0.657398i \(-0.228343\pi\)
0.753543 + 0.657398i \(0.228343\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 35.6985 1.43717 0.718583 0.695441i \(-0.244791\pi\)
0.718583 + 0.695441i \(0.244791\pi\)
\(618\) 0 0
\(619\) −14.1005 −0.566747 −0.283374 0.959010i \(-0.591454\pi\)
−0.283374 + 0.959010i \(0.591454\pi\)
\(620\) 0 0
\(621\) −7.41421 −0.297522
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −10.8284 −0.432446
\(628\) 0 0
\(629\) 12.2843 0.489806
\(630\) 0 0
\(631\) 6.68629 0.266177 0.133089 0.991104i \(-0.457511\pi\)
0.133089 + 0.991104i \(0.457511\pi\)
\(632\) 0 0
\(633\) −17.6569 −0.701797
\(634\) 0 0
\(635\) −14.1421 −0.561214
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −10.4853 −0.414791
\(640\) 0 0
\(641\) 9.02944 0.356641 0.178321 0.983972i \(-0.442934\pi\)
0.178321 + 0.983972i \(0.442934\pi\)
\(642\) 0 0
\(643\) 32.2843 1.27317 0.636584 0.771208i \(-0.280347\pi\)
0.636584 + 0.771208i \(0.280347\pi\)
\(644\) 0 0
\(645\) −1.65685 −0.0652386
\(646\) 0 0
\(647\) −35.3137 −1.38833 −0.694163 0.719818i \(-0.744225\pi\)
−0.694163 + 0.719818i \(0.744225\pi\)
\(648\) 0 0
\(649\) −5.65685 −0.222051
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.5858 0.649052 0.324526 0.945877i \(-0.394795\pi\)
0.324526 + 0.945877i \(0.394795\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) 4.48528 0.174987
\(658\) 0 0
\(659\) 9.79899 0.381714 0.190857 0.981618i \(-0.438873\pi\)
0.190857 + 0.981618i \(0.438873\pi\)
\(660\) 0 0
\(661\) 35.7574 1.39080 0.695400 0.718623i \(-0.255227\pi\)
0.695400 + 0.718623i \(0.255227\pi\)
\(662\) 0 0
\(663\) 3.31371 0.128694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −27.1127 −1.04981
\(668\) 0 0
\(669\) 5.17157 0.199945
\(670\) 0 0
\(671\) 19.7990 0.764332
\(672\) 0 0
\(673\) 40.8284 1.57382 0.786910 0.617068i \(-0.211680\pi\)
0.786910 + 0.617068i \(0.211680\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 42.9706 1.65149 0.825746 0.564041i \(-0.190754\pi\)
0.825746 + 0.564041i \(0.190754\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) −2.44365 −0.0935037 −0.0467518 0.998907i \(-0.514887\pi\)
−0.0467518 + 0.998907i \(0.514887\pi\)
\(684\) 0 0
\(685\) 7.89949 0.301824
\(686\) 0 0
\(687\) −5.41421 −0.206565
\(688\) 0 0
\(689\) 12.9706 0.494139
\(690\) 0 0
\(691\) −19.2721 −0.733144 −0.366572 0.930390i \(-0.619469\pi\)
−0.366572 + 0.930390i \(0.619469\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.55635 0.286629
\(696\) 0 0
\(697\) 2.34315 0.0887530
\(698\) 0 0
\(699\) 2.72792 0.103179
\(700\) 0 0
\(701\) −30.9706 −1.16974 −0.584871 0.811126i \(-0.698855\pi\)
−0.584871 + 0.811126i \(0.698855\pi\)
\(702\) 0 0
\(703\) −56.7696 −2.14110
\(704\) 0 0
\(705\) 10.4853 0.394899
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.68629 0.326221 0.163110 0.986608i \(-0.447847\pi\)
0.163110 + 0.986608i \(0.447847\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 0 0
\(713\) −31.4558 −1.17803
\(714\) 0 0
\(715\) −5.65685 −0.211554
\(716\) 0 0
\(717\) −19.6569 −0.734099
\(718\) 0 0
\(719\) 12.4853 0.465622 0.232811 0.972522i \(-0.425208\pi\)
0.232811 + 0.972522i \(0.425208\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 29.4142 1.09393
\(724\) 0 0
\(725\) 3.65685 0.135812
\(726\) 0 0
\(727\) −43.5980 −1.61696 −0.808480 0.588524i \(-0.799709\pi\)
−0.808480 + 0.588524i \(0.799709\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.94113 −0.0717951
\(732\) 0 0
\(733\) 24.4853 0.904385 0.452192 0.891920i \(-0.350642\pi\)
0.452192 + 0.891920i \(0.350642\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.6569 0.503057
\(738\) 0 0
\(739\) −6.62742 −0.243793 −0.121897 0.992543i \(-0.538898\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(740\) 0 0
\(741\) −15.3137 −0.562563
\(742\) 0 0
\(743\) −18.0416 −0.661883 −0.330942 0.943651i \(-0.607366\pi\)
−0.330942 + 0.943651i \(0.607366\pi\)
\(744\) 0 0
\(745\) 19.6569 0.720171
\(746\) 0 0
\(747\) −4.82843 −0.176663
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 13.6569 0.498346 0.249173 0.968459i \(-0.419841\pi\)
0.249173 + 0.968459i \(0.419841\pi\)
\(752\) 0 0
\(753\) 11.5147 0.419620
\(754\) 0 0
\(755\) −5.31371 −0.193386
\(756\) 0 0
\(757\) 0.828427 0.0301097 0.0150548 0.999887i \(-0.495208\pi\)
0.0150548 + 0.999887i \(0.495208\pi\)
\(758\) 0 0
\(759\) 14.8284 0.538238
\(760\) 0 0
\(761\) 6.48528 0.235091 0.117546 0.993067i \(-0.462497\pi\)
0.117546 + 0.993067i \(0.462497\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.17157 0.0423583
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) −13.2132 −0.476480 −0.238240 0.971206i \(-0.576571\pi\)
−0.238240 + 0.971206i \(0.576571\pi\)
\(770\) 0 0
\(771\) −21.3137 −0.767594
\(772\) 0 0
\(773\) 37.4558 1.34719 0.673597 0.739099i \(-0.264749\pi\)
0.673597 + 0.739099i \(0.264749\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.8284 −0.387969
\(780\) 0 0
\(781\) 20.9706 0.750386
\(782\) 0 0
\(783\) 3.65685 0.130685
\(784\) 0 0
\(785\) −10.1421 −0.361988
\(786\) 0 0
\(787\) −39.1127 −1.39422 −0.697109 0.716966i \(-0.745530\pi\)
−0.697109 + 0.716966i \(0.745530\pi\)
\(788\) 0 0
\(789\) −17.0711 −0.607746
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 28.0000 0.994309
\(794\) 0 0
\(795\) 4.58579 0.162641
\(796\) 0 0
\(797\) 15.1127 0.535319 0.267660 0.963514i \(-0.413750\pi\)
0.267660 + 0.963514i \(0.413750\pi\)
\(798\) 0 0
\(799\) 12.2843 0.434586
\(800\) 0 0
\(801\) −4.82843 −0.170604
\(802\) 0 0
\(803\) −8.97056 −0.316564
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −15.1716 −0.534065
\(808\) 0 0
\(809\) 5.51472 0.193887 0.0969436 0.995290i \(-0.469093\pi\)
0.0969436 + 0.995290i \(0.469093\pi\)
\(810\) 0 0
\(811\) −1.89949 −0.0667003 −0.0333501 0.999444i \(-0.510618\pi\)
−0.0333501 + 0.999444i \(0.510618\pi\)
\(812\) 0 0
\(813\) 20.2426 0.709940
\(814\) 0 0
\(815\) 18.1421 0.635491
\(816\) 0 0
\(817\) 8.97056 0.313840
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.4264 1.41089 0.705446 0.708764i \(-0.250747\pi\)
0.705446 + 0.708764i \(0.250747\pi\)
\(822\) 0 0
\(823\) 25.4558 0.887335 0.443667 0.896191i \(-0.353677\pi\)
0.443667 + 0.896191i \(0.353677\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) −14.2426 −0.495265 −0.247633 0.968854i \(-0.579653\pi\)
−0.247633 + 0.968854i \(0.579653\pi\)
\(828\) 0 0
\(829\) 3.07107 0.106663 0.0533313 0.998577i \(-0.483016\pi\)
0.0533313 + 0.998577i \(0.483016\pi\)
\(830\) 0 0
\(831\) 5.31371 0.184331
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 4.24264 0.146647
\(838\) 0 0
\(839\) 32.4853 1.12152 0.560758 0.827980i \(-0.310510\pi\)
0.560758 + 0.827980i \(0.310510\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) −2.97056 −0.102312
\(844\) 0 0
\(845\) 5.00000 0.172005
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −8.48528 −0.291214
\(850\) 0 0
\(851\) 77.7401 2.66490
\(852\) 0 0
\(853\) 40.2843 1.37931 0.689654 0.724139i \(-0.257763\pi\)
0.689654 + 0.724139i \(0.257763\pi\)
\(854\) 0 0
\(855\) −5.41421 −0.185162
\(856\) 0 0
\(857\) −25.4558 −0.869555 −0.434778 0.900538i \(-0.643173\pi\)
−0.434778 + 0.900538i \(0.643173\pi\)
\(858\) 0 0
\(859\) 10.1005 0.344625 0.172312 0.985042i \(-0.444876\pi\)
0.172312 + 0.985042i \(0.444876\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.8995 −1.22203 −0.611017 0.791618i \(-0.709239\pi\)
−0.611017 + 0.791618i \(0.709239\pi\)
\(864\) 0 0
\(865\) 14.1421 0.480847
\(866\) 0 0
\(867\) −15.6274 −0.530735
\(868\) 0 0
\(869\) 20.0000 0.678454
\(870\) 0 0
\(871\) 19.3137 0.654420
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −46.9706 −1.58608 −0.793042 0.609167i \(-0.791504\pi\)
−0.793042 + 0.609167i \(0.791504\pi\)
\(878\) 0 0
\(879\) −3.65685 −0.123343
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) −16.9706 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(884\) 0 0
\(885\) −2.82843 −0.0950765
\(886\) 0 0
\(887\) −27.1716 −0.912332 −0.456166 0.889895i \(-0.650778\pi\)
−0.456166 + 0.889895i \(0.650778\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) −56.7696 −1.89972
\(894\) 0 0
\(895\) 10.4853 0.350484
\(896\) 0 0
\(897\) 20.9706 0.700187
\(898\) 0 0
\(899\) 15.5147 0.517445
\(900\) 0 0
\(901\) 5.37258 0.178987
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.2426 −0.805853
\(906\) 0 0
\(907\) 33.6569 1.11756 0.558779 0.829317i \(-0.311270\pi\)
0.558779 + 0.829317i \(0.311270\pi\)
\(908\) 0 0
\(909\) 11.6569 0.386633
\(910\) 0 0
\(911\) −47.9411 −1.58836 −0.794180 0.607682i \(-0.792099\pi\)
−0.794180 + 0.607682i \(0.792099\pi\)
\(912\) 0 0
\(913\) 9.65685 0.319595
\(914\) 0 0
\(915\) 9.89949 0.327267
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 28.2843 0.933012 0.466506 0.884518i \(-0.345513\pi\)
0.466506 + 0.884518i \(0.345513\pi\)
\(920\) 0 0
\(921\) 1.65685 0.0545952
\(922\) 0 0
\(923\) 29.6569 0.976167
\(924\) 0 0
\(925\) −10.4853 −0.344754
\(926\) 0 0
\(927\) 2.82843 0.0928977
\(928\) 0 0
\(929\) 19.1716 0.628999 0.314499 0.949258i \(-0.398163\pi\)
0.314499 + 0.949258i \(0.398163\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 8.68629 0.284376
\(934\) 0 0
\(935\) −2.34315 −0.0766291
\(936\) 0 0
\(937\) −17.6569 −0.576824 −0.288412 0.957506i \(-0.593127\pi\)
−0.288412 + 0.957506i \(0.593127\pi\)
\(938\) 0 0
\(939\) 28.4853 0.929582
\(940\) 0 0
\(941\) −51.2548 −1.67086 −0.835430 0.549597i \(-0.814781\pi\)
−0.835430 + 0.549597i \(0.814781\pi\)
\(942\) 0 0
\(943\) 14.8284 0.482880
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.9289 0.745090 0.372545 0.928014i \(-0.378485\pi\)
0.372545 + 0.928014i \(0.378485\pi\)
\(948\) 0 0
\(949\) −12.6863 −0.411814
\(950\) 0 0
\(951\) 0.100505 0.00325910
\(952\) 0 0
\(953\) 46.0416 1.49143 0.745717 0.666262i \(-0.232107\pi\)
0.745717 + 0.666262i \(0.232107\pi\)
\(954\) 0 0
\(955\) −14.9706 −0.484436
\(956\) 0 0
\(957\) −7.31371 −0.236419
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) 5.07107 0.163413
\(964\) 0 0
\(965\) −12.8284 −0.412962
\(966\) 0 0
\(967\) −20.2010 −0.649621 −0.324810 0.945779i \(-0.605300\pi\)
−0.324810 + 0.945779i \(0.605300\pi\)
\(968\) 0 0
\(969\) −6.34315 −0.203771
\(970\) 0 0
\(971\) 20.4853 0.657404 0.328702 0.944434i \(-0.393389\pi\)
0.328702 + 0.944434i \(0.393389\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.82843 −0.0905822
\(976\) 0 0
\(977\) 30.0416 0.961117 0.480558 0.876963i \(-0.340434\pi\)
0.480558 + 0.876963i \(0.340434\pi\)
\(978\) 0 0
\(979\) 9.65685 0.308634
\(980\) 0 0
\(981\) −4.34315 −0.138666
\(982\) 0 0
\(983\) 55.5980 1.77330 0.886650 0.462441i \(-0.153026\pi\)
0.886650 + 0.462441i \(0.153026\pi\)
\(984\) 0 0
\(985\) −13.0711 −0.416479
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2843 −0.390617
\(990\) 0 0
\(991\) −11.3137 −0.359392 −0.179696 0.983722i \(-0.557511\pi\)
−0.179696 + 0.983722i \(0.557511\pi\)
\(992\) 0 0
\(993\) −34.6274 −1.09887
\(994\) 0 0
\(995\) −8.24264 −0.261309
\(996\) 0 0
\(997\) 3.31371 0.104946 0.0524731 0.998622i \(-0.483290\pi\)
0.0524731 + 0.998622i \(0.483290\pi\)
\(998\) 0 0
\(999\) −10.4853 −0.331740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.a.q.1.1 yes 2
3.2 odd 2 8820.2.a.bm.1.1 2
7.2 even 3 2940.2.q.p.361.1 4
7.3 odd 6 2940.2.q.r.961.2 4
7.4 even 3 2940.2.q.p.961.1 4
7.5 odd 6 2940.2.q.r.361.2 4
7.6 odd 2 2940.2.a.o.1.2 2
21.20 even 2 8820.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.2.a.o.1.2 2 7.6 odd 2
2940.2.a.q.1.1 yes 2 1.1 even 1 trivial
2940.2.q.p.361.1 4 7.2 even 3
2940.2.q.p.961.1 4 7.4 even 3
2940.2.q.r.361.2 4 7.5 odd 6
2940.2.q.r.961.2 4 7.3 odd 6
8820.2.a.bh.1.2 2 21.20 even 2
8820.2.a.bm.1.1 2 3.2 odd 2