Defining parameters
Level: | \( N \) | \(=\) | \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2940.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2940))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 720 | 28 | 692 |
Cusp forms | 625 | 28 | 597 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(40\) | \(0\) | \(40\) | \(33\) | \(0\) | \(33\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(51\) | \(0\) | \(51\) | \(43\) | \(0\) | \(43\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(52\) | \(0\) | \(52\) | \(44\) | \(0\) | \(44\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(41\) | \(0\) | \(41\) | \(33\) | \(0\) | \(33\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(48\) | \(0\) | \(48\) | \(40\) | \(0\) | \(40\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(43\) | \(0\) | \(43\) | \(35\) | \(0\) | \(35\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(44\) | \(0\) | \(44\) | \(36\) | \(0\) | \(36\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(49\) | \(0\) | \(49\) | \(41\) | \(0\) | \(41\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(44\) | \(3\) | \(41\) | \(40\) | \(3\) | \(37\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(45\) | \(4\) | \(41\) | \(41\) | \(4\) | \(37\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(44\) | \(3\) | \(41\) | \(40\) | \(3\) | \(37\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(43\) | \(4\) | \(39\) | \(39\) | \(4\) | \(35\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(48\) | \(4\) | \(44\) | \(44\) | \(4\) | \(40\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(41\) | \(3\) | \(38\) | \(37\) | \(3\) | \(34\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(40\) | \(4\) | \(36\) | \(36\) | \(4\) | \(32\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(47\) | \(3\) | \(44\) | \(43\) | \(3\) | \(40\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(352\) | \(14\) | \(338\) | \(305\) | \(14\) | \(291\) | \(47\) | \(0\) | \(47\) | ||||||
Minus space | \(-\) | \(368\) | \(14\) | \(354\) | \(320\) | \(14\) | \(306\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2940))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2940))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2940)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(735))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(980))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1470))\)\(^{\oplus 2}\)