Properties

Label 2940.2.a.m
Level $2940$
Weight $2$
Character orbit 2940.a
Self dual yes
Analytic conductor $23.476$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.4760181943\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - q^{5} + q^{9} + (\beta + 1) q^{11} - \beta q^{13} + q^{15} + ( - \beta - 1) q^{17} + (2 \beta - 3) q^{19} + ( - \beta - 1) q^{23} + q^{25} - q^{27} + ( - \beta + 5) q^{29} + ( - 2 \beta - 1) q^{31} + ( - \beta - 1) q^{33} + ( - \beta - 2) q^{37} + \beta q^{39} + (3 \beta + 3) q^{41} + (3 \beta + 2) q^{43} - q^{45} - 6 q^{47} + (\beta + 1) q^{51} + ( - 2 \beta - 2) q^{53} + ( - \beta - 1) q^{55} + ( - 2 \beta + 3) q^{57} + (3 \beta - 3) q^{59} - 8 q^{61} + \beta q^{65} + ( - \beta - 2) q^{67} + (\beta + 1) q^{69} + ( - \beta + 11) q^{71} + 5 \beta q^{73} - q^{75} + ( - 2 \beta - 3) q^{79} + q^{81} + ( - 3 \beta + 3) q^{83} + (\beta + 1) q^{85} + (\beta - 5) q^{87} + ( - 5 \beta + 1) q^{89} + (2 \beta + 1) q^{93} + ( - 2 \beta + 3) q^{95} - 8 q^{97} + (\beta + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{5} + 2 q^{9} + 2 q^{11} + 2 q^{15} - 2 q^{17} - 6 q^{19} - 2 q^{23} + 2 q^{25} - 2 q^{27} + 10 q^{29} - 2 q^{31} - 2 q^{33} - 4 q^{37} + 6 q^{41} + 4 q^{43} - 2 q^{45} - 12 q^{47} + 2 q^{51} - 4 q^{53} - 2 q^{55} + 6 q^{57} - 6 q^{59} - 16 q^{61} - 4 q^{67} + 2 q^{69} + 22 q^{71} - 2 q^{75} - 6 q^{79} + 2 q^{81} + 6 q^{83} + 2 q^{85} - 10 q^{87} + 2 q^{89} + 2 q^{93} + 6 q^{95} - 16 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 −1.00000 0 −1.00000 0 0 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.a.m 2
3.b odd 2 1 8820.2.a.bj 2
7.b odd 2 1 2940.2.a.s 2
7.c even 3 2 2940.2.q.t 4
7.d odd 6 2 420.2.q.c 4
21.c even 2 1 8820.2.a.be 2
21.g even 6 2 1260.2.s.f 4
28.f even 6 2 1680.2.bg.q 4
35.i odd 6 2 2100.2.q.h 4
35.k even 12 4 2100.2.bc.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.q.c 4 7.d odd 6 2
1260.2.s.f 4 21.g even 6 2
1680.2.bg.q 4 28.f even 6 2
2100.2.q.h 4 35.i odd 6 2
2100.2.bc.e 8 35.k even 12 4
2940.2.a.m 2 1.a even 1 1 trivial
2940.2.a.s 2 7.b odd 2 1
2940.2.q.t 4 7.c even 3 2
8820.2.a.be 2 21.c even 2 1
8820.2.a.bj 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2940))\):

\( T_{11}^{2} - 2T_{11} - 6 \) Copy content Toggle raw display
\( T_{13}^{2} - 7 \) Copy content Toggle raw display
\( T_{17}^{2} + 2T_{17} - 6 \) Copy content Toggle raw display
\( T_{31}^{2} + 2T_{31} - 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 6 \) Copy content Toggle raw display
$13$ \( T^{2} - 7 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T - 6 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T - 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 6 \) Copy content Toggle raw display
$29$ \( T^{2} - 10T + 18 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 27 \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 3 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T - 54 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 59 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 4T - 24 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 54 \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 3 \) Copy content Toggle raw display
$71$ \( T^{2} - 22T + 114 \) Copy content Toggle raw display
$73$ \( T^{2} - 175 \) Copy content Toggle raw display
$79$ \( T^{2} + 6T - 19 \) Copy content Toggle raw display
$83$ \( T^{2} - 6T - 54 \) Copy content Toggle raw display
$89$ \( T^{2} - 2T - 174 \) Copy content Toggle raw display
$97$ \( (T + 8)^{2} \) Copy content Toggle raw display
show more
show less