Properties

Label 2940.2.q.p.361.1
Level $2940$
Weight $2$
Character 2940.361
Analytic conductor $23.476$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(361,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,2,0,0,0,-2,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2940.361
Dual form 2940.2.q.p.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{9} +(1.00000 - 1.73205i) q^{11} -2.82843 q^{13} -1.00000 q^{15} +(0.585786 - 1.01461i) q^{17} +(-2.70711 - 4.68885i) q^{19} +(3.70711 + 6.42090i) q^{23} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +3.65685 q^{29} +(-2.12132 + 3.67423i) q^{31} +(1.00000 + 1.73205i) q^{33} +(5.24264 + 9.08052i) q^{37} +(1.41421 - 2.44949i) q^{39} -2.00000 q^{41} +1.65685 q^{43} +(0.500000 - 0.866025i) q^{45} +(5.24264 + 9.08052i) q^{47} +(0.585786 + 1.01461i) q^{51} +(2.29289 - 3.97141i) q^{53} +2.00000 q^{55} +5.41421 q^{57} +(-1.41421 + 2.44949i) q^{59} +(4.94975 + 8.57321i) q^{61} +(-1.41421 - 2.44949i) q^{65} +(3.41421 - 5.91359i) q^{67} -7.41421 q^{69} -10.4853 q^{71} +(-2.24264 + 3.88437i) q^{73} +(-0.500000 - 0.866025i) q^{75} +(5.00000 + 8.66025i) q^{79} +(-0.500000 + 0.866025i) q^{81} -4.82843 q^{83} +1.17157 q^{85} +(-1.82843 + 3.16693i) q^{87} +(2.41421 + 4.18154i) q^{89} +(-2.12132 - 3.67423i) q^{93} +(2.70711 - 4.68885i) q^{95} +4.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} - 2 q^{9} + 4 q^{11} - 4 q^{15} + 8 q^{17} - 8 q^{19} + 12 q^{23} - 2 q^{25} + 4 q^{27} - 8 q^{29} + 4 q^{33} + 4 q^{37} - 8 q^{41} - 16 q^{43} + 2 q^{45} + 4 q^{47} + 8 q^{51} + 12 q^{53}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0.585786 1.01461i 0.142074 0.246080i −0.786203 0.617968i \(-0.787956\pi\)
0.928278 + 0.371888i \(0.121290\pi\)
\(18\) 0 0
\(19\) −2.70711 4.68885i −0.621053 1.07570i −0.989290 0.145963i \(-0.953372\pi\)
0.368237 0.929732i \(-0.379961\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.70711 + 6.42090i 0.772985 + 1.33885i 0.935920 + 0.352213i \(0.114571\pi\)
−0.162935 + 0.986637i \(0.552096\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.65685 0.679061 0.339530 0.940595i \(-0.389732\pi\)
0.339530 + 0.940595i \(0.389732\pi\)
\(30\) 0 0
\(31\) −2.12132 + 3.67423i −0.381000 + 0.659912i −0.991206 0.132331i \(-0.957754\pi\)
0.610205 + 0.792243i \(0.291087\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.24264 + 9.08052i 0.861885 + 1.49283i 0.870107 + 0.492862i \(0.164049\pi\)
−0.00822261 + 0.999966i \(0.502617\pi\)
\(38\) 0 0
\(39\) 1.41421 2.44949i 0.226455 0.392232i
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) 5.24264 + 9.08052i 0.764718 + 1.32453i 0.940396 + 0.340082i \(0.110455\pi\)
−0.175678 + 0.984448i \(0.556212\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.585786 + 1.01461i 0.0820265 + 0.142074i
\(52\) 0 0
\(53\) 2.29289 3.97141i 0.314953 0.545515i −0.664474 0.747311i \(-0.731345\pi\)
0.979428 + 0.201796i \(0.0646779\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 5.41421 0.717130
\(58\) 0 0
\(59\) −1.41421 + 2.44949i −0.184115 + 0.318896i −0.943278 0.332004i \(-0.892275\pi\)
0.759163 + 0.650901i \(0.225609\pi\)
\(60\) 0 0
\(61\) 4.94975 + 8.57321i 0.633750 + 1.09769i 0.986778 + 0.162075i \(0.0518186\pi\)
−0.353028 + 0.935613i \(0.614848\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.41421 2.44949i −0.175412 0.303822i
\(66\) 0 0
\(67\) 3.41421 5.91359i 0.417113 0.722460i −0.578535 0.815657i \(-0.696375\pi\)
0.995648 + 0.0931973i \(0.0297087\pi\)
\(68\) 0 0
\(69\) −7.41421 −0.892566
\(70\) 0 0
\(71\) −10.4853 −1.24437 −0.622187 0.782869i \(-0.713756\pi\)
−0.622187 + 0.782869i \(0.713756\pi\)
\(72\) 0 0
\(73\) −2.24264 + 3.88437i −0.262481 + 0.454631i −0.966901 0.255153i \(-0.917874\pi\)
0.704419 + 0.709784i \(0.251207\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −4.82843 −0.529989 −0.264994 0.964250i \(-0.585370\pi\)
−0.264994 + 0.964250i \(0.585370\pi\)
\(84\) 0 0
\(85\) 1.17157 0.127075
\(86\) 0 0
\(87\) −1.82843 + 3.16693i −0.196028 + 0.339530i
\(88\) 0 0
\(89\) 2.41421 + 4.18154i 0.255906 + 0.443242i 0.965141 0.261730i \(-0.0842929\pi\)
−0.709235 + 0.704972i \(0.750960\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.12132 3.67423i −0.219971 0.381000i
\(94\) 0 0
\(95\) 2.70711 4.68885i 0.277743 0.481065i
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −5.82843 + 10.0951i −0.579950 + 1.00450i 0.415534 + 0.909578i \(0.363595\pi\)
−0.995484 + 0.0949256i \(0.969739\pi\)
\(102\) 0 0
\(103\) −1.41421 2.44949i −0.139347 0.241355i 0.787903 0.615800i \(-0.211167\pi\)
−0.927249 + 0.374444i \(0.877834\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.53553 4.39167i −0.245119 0.424559i 0.717046 0.697026i \(-0.245494\pi\)
−0.962165 + 0.272467i \(0.912160\pi\)
\(108\) 0 0
\(109\) 2.17157 3.76127i 0.207999 0.360265i −0.743085 0.669197i \(-0.766638\pi\)
0.951084 + 0.308932i \(0.0999716\pi\)
\(110\) 0 0
\(111\) −10.4853 −0.995219
\(112\) 0 0
\(113\) −6.24264 −0.587258 −0.293629 0.955919i \(-0.594863\pi\)
−0.293629 + 0.955919i \(0.594863\pi\)
\(114\) 0 0
\(115\) −3.70711 + 6.42090i −0.345689 + 0.598752i
\(116\) 0 0
\(117\) 1.41421 + 2.44949i 0.130744 + 0.226455i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 1.00000 1.73205i 0.0901670 0.156174i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.1421 1.25491 0.627456 0.778652i \(-0.284096\pi\)
0.627456 + 0.778652i \(0.284096\pi\)
\(128\) 0 0
\(129\) −0.828427 + 1.43488i −0.0729389 + 0.126334i
\(130\) 0 0
\(131\) −5.65685 9.79796i −0.494242 0.856052i 0.505736 0.862688i \(-0.331221\pi\)
−0.999978 + 0.00663646i \(0.997888\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) 3.94975 6.84116i 0.337450 0.584480i −0.646503 0.762912i \(-0.723769\pi\)
0.983952 + 0.178432i \(0.0571024\pi\)
\(138\) 0 0
\(139\) −7.55635 −0.640921 −0.320461 0.947262i \(-0.603838\pi\)
−0.320461 + 0.947262i \(0.603838\pi\)
\(140\) 0 0
\(141\) −10.4853 −0.883020
\(142\) 0 0
\(143\) −2.82843 + 4.89898i −0.236525 + 0.409673i
\(144\) 0 0
\(145\) 1.82843 + 3.16693i 0.151843 + 0.262999i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.82843 + 17.0233i 0.805176 + 1.39461i 0.916172 + 0.400785i \(0.131263\pi\)
−0.110996 + 0.993821i \(0.535404\pi\)
\(150\) 0 0
\(151\) −2.65685 + 4.60181i −0.216212 + 0.374490i −0.953647 0.300928i \(-0.902703\pi\)
0.737435 + 0.675418i \(0.236037\pi\)
\(152\) 0 0
\(153\) −1.17157 −0.0947161
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 0 0
\(157\) −5.07107 + 8.78335i −0.404715 + 0.700987i −0.994288 0.106728i \(-0.965963\pi\)
0.589573 + 0.807715i \(0.299296\pi\)
\(158\) 0 0
\(159\) 2.29289 + 3.97141i 0.181838 + 0.314953i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.07107 + 15.7116i 0.710501 + 1.23062i 0.964669 + 0.263464i \(0.0848649\pi\)
−0.254168 + 0.967160i \(0.581802\pi\)
\(164\) 0 0
\(165\) −1.00000 + 1.73205i −0.0778499 + 0.134840i
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −2.70711 + 4.68885i −0.207018 + 0.358565i
\(172\) 0 0
\(173\) 7.07107 + 12.2474i 0.537603 + 0.931156i 0.999032 + 0.0439792i \(0.0140035\pi\)
−0.461429 + 0.887177i \(0.652663\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.41421 2.44949i −0.106299 0.184115i
\(178\) 0 0
\(179\) 5.24264 9.08052i 0.391853 0.678710i −0.600841 0.799369i \(-0.705167\pi\)
0.992694 + 0.120659i \(0.0385007\pi\)
\(180\) 0 0
\(181\) 24.2426 1.80194 0.900971 0.433880i \(-0.142856\pi\)
0.900971 + 0.433880i \(0.142856\pi\)
\(182\) 0 0
\(183\) −9.89949 −0.731792
\(184\) 0 0
\(185\) −5.24264 + 9.08052i −0.385447 + 0.667613i
\(186\) 0 0
\(187\) −1.17157 2.02922i −0.0856739 0.148392i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.48528 12.9649i −0.541616 0.938106i −0.998811 0.0487401i \(-0.984479\pi\)
0.457196 0.889366i \(-0.348854\pi\)
\(192\) 0 0
\(193\) −6.41421 + 11.1097i −0.461705 + 0.799697i −0.999046 0.0436683i \(-0.986096\pi\)
0.537341 + 0.843365i \(0.319429\pi\)
\(194\) 0 0
\(195\) 2.82843 0.202548
\(196\) 0 0
\(197\) 13.0711 0.931275 0.465638 0.884976i \(-0.345825\pi\)
0.465638 + 0.884976i \(0.345825\pi\)
\(198\) 0 0
\(199\) −4.12132 + 7.13834i −0.292153 + 0.506023i −0.974319 0.225174i \(-0.927705\pi\)
0.682166 + 0.731197i \(0.261038\pi\)
\(200\) 0 0
\(201\) 3.41421 + 5.91359i 0.240820 + 0.417113i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 1.73205i −0.0698430 0.120972i
\(206\) 0 0
\(207\) 3.70711 6.42090i 0.257662 0.446283i
\(208\) 0 0
\(209\) −10.8284 −0.749018
\(210\) 0 0
\(211\) −17.6569 −1.21555 −0.607774 0.794110i \(-0.707937\pi\)
−0.607774 + 0.794110i \(0.707937\pi\)
\(212\) 0 0
\(213\) 5.24264 9.08052i 0.359220 0.622187i
\(214\) 0 0
\(215\) 0.828427 + 1.43488i 0.0564983 + 0.0978579i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.24264 3.88437i −0.151544 0.262481i
\(220\) 0 0
\(221\) −1.65685 + 2.86976i −0.111452 + 0.193041i
\(222\) 0 0
\(223\) 5.17157 0.346314 0.173157 0.984894i \(-0.444603\pi\)
0.173157 + 0.984894i \(0.444603\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 2.00000 3.46410i 0.132745 0.229920i −0.791989 0.610535i \(-0.790954\pi\)
0.924734 + 0.380615i \(0.124288\pi\)
\(228\) 0 0
\(229\) 2.70711 + 4.68885i 0.178891 + 0.309848i 0.941501 0.337011i \(-0.109416\pi\)
−0.762610 + 0.646858i \(0.776082\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.36396 2.36245i −0.0893561 0.154769i 0.817883 0.575384i \(-0.195148\pi\)
−0.907239 + 0.420615i \(0.861814\pi\)
\(234\) 0 0
\(235\) −5.24264 + 9.08052i −0.341992 + 0.592348i
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −19.6569 −1.27150 −0.635748 0.771897i \(-0.719308\pi\)
−0.635748 + 0.771897i \(0.719308\pi\)
\(240\) 0 0
\(241\) −14.7071 + 25.4735i −0.947368 + 1.64089i −0.196429 + 0.980518i \(0.562935\pi\)
−0.750939 + 0.660372i \(0.770399\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.65685 + 13.2621i 0.487194 + 0.843845i
\(248\) 0 0
\(249\) 2.41421 4.18154i 0.152995 0.264994i
\(250\) 0 0
\(251\) 11.5147 0.726803 0.363401 0.931633i \(-0.381615\pi\)
0.363401 + 0.931633i \(0.381615\pi\)
\(252\) 0 0
\(253\) 14.8284 0.932255
\(254\) 0 0
\(255\) −0.585786 + 1.01461i −0.0366834 + 0.0635375i
\(256\) 0 0
\(257\) 10.6569 + 18.4582i 0.664756 + 1.15139i 0.979351 + 0.202166i \(0.0647980\pi\)
−0.314595 + 0.949226i \(0.601869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.82843 3.16693i −0.113177 0.196028i
\(262\) 0 0
\(263\) 8.53553 14.7840i 0.526324 0.911619i −0.473206 0.880952i \(-0.656903\pi\)
0.999530 0.0306674i \(-0.00976327\pi\)
\(264\) 0 0
\(265\) 4.58579 0.281703
\(266\) 0 0
\(267\) −4.82843 −0.295495
\(268\) 0 0
\(269\) 7.58579 13.1390i 0.462514 0.801097i −0.536572 0.843855i \(-0.680281\pi\)
0.999085 + 0.0427576i \(0.0136143\pi\)
\(270\) 0 0
\(271\) −10.1213 17.5306i −0.614826 1.06491i −0.990415 0.138124i \(-0.955893\pi\)
0.375589 0.926787i \(-0.377441\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 + 1.73205i 0.0603023 + 0.104447i
\(276\) 0 0
\(277\) −2.65685 + 4.60181i −0.159635 + 0.276496i −0.934737 0.355340i \(-0.884365\pi\)
0.775102 + 0.631836i \(0.217698\pi\)
\(278\) 0 0
\(279\) 4.24264 0.254000
\(280\) 0 0
\(281\) −2.97056 −0.177209 −0.0886045 0.996067i \(-0.528241\pi\)
−0.0886045 + 0.996067i \(0.528241\pi\)
\(282\) 0 0
\(283\) 4.24264 7.34847i 0.252199 0.436821i −0.711932 0.702248i \(-0.752180\pi\)
0.964131 + 0.265427i \(0.0855130\pi\)
\(284\) 0 0
\(285\) 2.70711 + 4.68885i 0.160355 + 0.277743i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.81371 + 13.5337i 0.459630 + 0.796102i
\(290\) 0 0
\(291\) −2.00000 + 3.46410i −0.117242 + 0.203069i
\(292\) 0 0
\(293\) −3.65685 −0.213636 −0.106818 0.994279i \(-0.534066\pi\)
−0.106818 + 0.994279i \(0.534066\pi\)
\(294\) 0 0
\(295\) −2.82843 −0.164677
\(296\) 0 0
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) 0 0
\(299\) −10.4853 18.1610i −0.606379 1.05028i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −5.82843 10.0951i −0.334834 0.579950i
\(304\) 0 0
\(305\) −4.94975 + 8.57321i −0.283422 + 0.490901i
\(306\) 0 0
\(307\) 1.65685 0.0945617 0.0472808 0.998882i \(-0.484944\pi\)
0.0472808 + 0.998882i \(0.484944\pi\)
\(308\) 0 0
\(309\) 2.82843 0.160904
\(310\) 0 0
\(311\) −4.34315 + 7.52255i −0.246277 + 0.426565i −0.962490 0.271317i \(-0.912541\pi\)
0.716213 + 0.697882i \(0.245874\pi\)
\(312\) 0 0
\(313\) −14.2426 24.6690i −0.805042 1.39437i −0.916263 0.400577i \(-0.868810\pi\)
0.111221 0.993796i \(-0.464524\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.0502525 0.0870399i −0.00282246 0.00488865i 0.864611 0.502442i \(-0.167565\pi\)
−0.867433 + 0.497554i \(0.834232\pi\)
\(318\) 0 0
\(319\) 3.65685 6.33386i 0.204745 0.354628i
\(320\) 0 0
\(321\) 5.07107 0.283039
\(322\) 0 0
\(323\) −6.34315 −0.352942
\(324\) 0 0
\(325\) 1.41421 2.44949i 0.0784465 0.135873i
\(326\) 0 0
\(327\) 2.17157 + 3.76127i 0.120088 + 0.207999i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 17.3137 + 29.9882i 0.951647 + 1.64830i 0.741860 + 0.670555i \(0.233944\pi\)
0.209787 + 0.977747i \(0.432723\pi\)
\(332\) 0 0
\(333\) 5.24264 9.08052i 0.287295 0.497609i
\(334\) 0 0
\(335\) 6.82843 0.373077
\(336\) 0 0
\(337\) 33.7990 1.84115 0.920574 0.390568i \(-0.127721\pi\)
0.920574 + 0.390568i \(0.127721\pi\)
\(338\) 0 0
\(339\) 3.12132 5.40629i 0.169527 0.293629i
\(340\) 0 0
\(341\) 4.24264 + 7.34847i 0.229752 + 0.397942i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.70711 6.42090i −0.199584 0.345689i
\(346\) 0 0
\(347\) −6.29289 + 10.8996i −0.337820 + 0.585122i −0.984022 0.178044i \(-0.943023\pi\)
0.646202 + 0.763166i \(0.276356\pi\)
\(348\) 0 0
\(349\) 29.2132 1.56375 0.781873 0.623437i \(-0.214264\pi\)
0.781873 + 0.623437i \(0.214264\pi\)
\(350\) 0 0
\(351\) −2.82843 −0.150970
\(352\) 0 0
\(353\) −15.1421 + 26.2269i −0.805935 + 1.39592i 0.109724 + 0.993962i \(0.465003\pi\)
−0.915658 + 0.401957i \(0.868330\pi\)
\(354\) 0 0
\(355\) −5.24264 9.08052i −0.278250 0.481944i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.4853 23.3572i −0.711726 1.23275i −0.964209 0.265144i \(-0.914580\pi\)
0.252483 0.967601i \(-0.418753\pi\)
\(360\) 0 0
\(361\) −5.15685 + 8.93193i −0.271413 + 0.470102i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −4.48528 −0.234770
\(366\) 0 0
\(367\) 15.4142 26.6982i 0.804615 1.39363i −0.111935 0.993716i \(-0.535705\pi\)
0.916550 0.399919i \(-0.130962\pi\)
\(368\) 0 0
\(369\) 1.00000 + 1.73205i 0.0520579 + 0.0901670i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.34315 2.32640i −0.0695455 0.120456i 0.829156 0.559018i \(-0.188822\pi\)
−0.898701 + 0.438561i \(0.855488\pi\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 0 0
\(377\) −10.3431 −0.532699
\(378\) 0 0
\(379\) 31.9411 1.64071 0.820353 0.571858i \(-0.193777\pi\)
0.820353 + 0.571858i \(0.193777\pi\)
\(380\) 0 0
\(381\) −7.07107 + 12.2474i −0.362262 + 0.627456i
\(382\) 0 0
\(383\) 1.92893 + 3.34101i 0.0985638 + 0.170718i 0.911090 0.412207i \(-0.135242\pi\)
−0.812527 + 0.582924i \(0.801908\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.828427 1.43488i −0.0421113 0.0729389i
\(388\) 0 0
\(389\) −3.58579 + 6.21076i −0.181807 + 0.314898i −0.942496 0.334218i \(-0.891528\pi\)
0.760689 + 0.649116i \(0.224861\pi\)
\(390\) 0 0
\(391\) 8.68629 0.439285
\(392\) 0 0
\(393\) 11.3137 0.570701
\(394\) 0 0
\(395\) −5.00000 + 8.66025i −0.251577 + 0.435745i
\(396\) 0 0
\(397\) 14.1421 + 24.4949i 0.709773 + 1.22936i 0.964941 + 0.262467i \(0.0845360\pi\)
−0.255168 + 0.966897i \(0.582131\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.2426 33.3292i −0.960932 1.66438i −0.720169 0.693798i \(-0.755936\pi\)
−0.240762 0.970584i \(-0.577397\pi\)
\(402\) 0 0
\(403\) 6.00000 10.3923i 0.298881 0.517678i
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 20.9706 1.03947
\(408\) 0 0
\(409\) 12.3640 21.4150i 0.611359 1.05890i −0.379653 0.925129i \(-0.623957\pi\)
0.991012 0.133775i \(-0.0427100\pi\)
\(410\) 0 0
\(411\) 3.94975 + 6.84116i 0.194827 + 0.337450i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.41421 4.18154i −0.118509 0.205264i
\(416\) 0 0
\(417\) 3.77817 6.54399i 0.185018 0.320461i
\(418\) 0 0
\(419\) −32.9706 −1.61072 −0.805359 0.592788i \(-0.798027\pi\)
−0.805359 + 0.592788i \(0.798027\pi\)
\(420\) 0 0
\(421\) −32.2843 −1.57344 −0.786720 0.617311i \(-0.788222\pi\)
−0.786720 + 0.617311i \(0.788222\pi\)
\(422\) 0 0
\(423\) 5.24264 9.08052i 0.254906 0.441510i
\(424\) 0 0
\(425\) 0.585786 + 1.01461i 0.0284148 + 0.0492159i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.82843 4.89898i −0.136558 0.236525i
\(430\) 0 0
\(431\) −19.2426 + 33.3292i −0.926885 + 1.60541i −0.138385 + 0.990379i \(0.544191\pi\)
−0.788501 + 0.615034i \(0.789142\pi\)
\(432\) 0 0
\(433\) 13.1716 0.632985 0.316493 0.948595i \(-0.397495\pi\)
0.316493 + 0.948595i \(0.397495\pi\)
\(434\) 0 0
\(435\) −3.65685 −0.175333
\(436\) 0 0
\(437\) 20.0711 34.7641i 0.960129 1.66299i
\(438\) 0 0
\(439\) −12.3640 21.4150i −0.590100 1.02208i −0.994218 0.107376i \(-0.965755\pi\)
0.404119 0.914707i \(-0.367578\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.2929 + 17.8278i 0.489030 + 0.847025i 0.999920 0.0126209i \(-0.00401748\pi\)
−0.510890 + 0.859646i \(0.670684\pi\)
\(444\) 0 0
\(445\) −2.41421 + 4.18154i −0.114445 + 0.198224i
\(446\) 0 0
\(447\) −19.6569 −0.929737
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) −2.00000 + 3.46410i −0.0941763 + 0.163118i
\(452\) 0 0
\(453\) −2.65685 4.60181i −0.124830 0.216212i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.75736 8.23999i −0.222540 0.385450i 0.733039 0.680187i \(-0.238101\pi\)
−0.955579 + 0.294737i \(0.904768\pi\)
\(458\) 0 0
\(459\) 0.585786 1.01461i 0.0273422 0.0473580i
\(460\) 0 0
\(461\) 11.4558 0.533552 0.266776 0.963759i \(-0.414042\pi\)
0.266776 + 0.963759i \(0.414042\pi\)
\(462\) 0 0
\(463\) −5.85786 −0.272238 −0.136119 0.990692i \(-0.543463\pi\)
−0.136119 + 0.990692i \(0.543463\pi\)
\(464\) 0 0
\(465\) 2.12132 3.67423i 0.0983739 0.170389i
\(466\) 0 0
\(467\) −14.9706 25.9298i −0.692755 1.19989i −0.970932 0.239357i \(-0.923063\pi\)
0.278177 0.960530i \(-0.410270\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.07107 8.78335i −0.233662 0.404715i
\(472\) 0 0
\(473\) 1.65685 2.86976i 0.0761822 0.131952i
\(474\) 0 0
\(475\) 5.41421 0.248421
\(476\) 0 0
\(477\) −4.58579 −0.209969
\(478\) 0 0
\(479\) 16.9706 29.3939i 0.775405 1.34304i −0.159162 0.987252i \(-0.550879\pi\)
0.934567 0.355788i \(-0.115787\pi\)
\(480\) 0 0
\(481\) −14.8284 25.6836i −0.676118 1.17107i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 + 3.46410i 0.0908153 + 0.157297i
\(486\) 0 0
\(487\) 10.1421 17.5667i 0.459584 0.796023i −0.539355 0.842079i \(-0.681332\pi\)
0.998939 + 0.0460557i \(0.0146652\pi\)
\(488\) 0 0
\(489\) −18.1421 −0.820416
\(490\) 0 0
\(491\) −29.1127 −1.31384 −0.656919 0.753961i \(-0.728141\pi\)
−0.656919 + 0.753961i \(0.728141\pi\)
\(492\) 0 0
\(493\) 2.14214 3.71029i 0.0964769 0.167103i
\(494\) 0 0
\(495\) −1.00000 1.73205i −0.0449467 0.0778499i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 15.1421 + 26.2269i 0.677855 + 1.17408i 0.975626 + 0.219442i \(0.0704237\pi\)
−0.297770 + 0.954637i \(0.596243\pi\)
\(500\) 0 0
\(501\) 8.00000 13.8564i 0.357414 0.619059i
\(502\) 0 0
\(503\) −32.8284 −1.46375 −0.731874 0.681440i \(-0.761354\pi\)
−0.731874 + 0.681440i \(0.761354\pi\)
\(504\) 0 0
\(505\) −11.6569 −0.518723
\(506\) 0 0
\(507\) 2.50000 4.33013i 0.111029 0.192308i
\(508\) 0 0
\(509\) 19.2426 + 33.3292i 0.852915 + 1.47729i 0.878566 + 0.477621i \(0.158501\pi\)
−0.0256508 + 0.999671i \(0.508166\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.70711 4.68885i −0.119522 0.207018i
\(514\) 0 0
\(515\) 1.41421 2.44949i 0.0623177 0.107937i
\(516\) 0 0
\(517\) 20.9706 0.922284
\(518\) 0 0
\(519\) −14.1421 −0.620771
\(520\) 0 0
\(521\) 10.5563 18.2841i 0.462482 0.801042i −0.536602 0.843836i \(-0.680292\pi\)
0.999084 + 0.0427931i \(0.0136256\pi\)
\(522\) 0 0
\(523\) 6.58579 + 11.4069i 0.287976 + 0.498790i 0.973327 0.229424i \(-0.0736842\pi\)
−0.685350 + 0.728214i \(0.740351\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.48528 + 4.30463i 0.108261 + 0.187513i
\(528\) 0 0
\(529\) −15.9853 + 27.6873i −0.695012 + 1.20380i
\(530\) 0 0
\(531\) 2.82843 0.122743
\(532\) 0 0
\(533\) 5.65685 0.245026
\(534\) 0 0
\(535\) 2.53553 4.39167i 0.109621 0.189869i
\(536\) 0 0
\(537\) 5.24264 + 9.08052i 0.226237 + 0.391853i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −18.1421 31.4231i −0.779991 1.35098i −0.931946 0.362597i \(-0.881890\pi\)
0.151955 0.988387i \(-0.451443\pi\)
\(542\) 0 0
\(543\) −12.1213 + 20.9947i −0.520176 + 0.900971i
\(544\) 0 0
\(545\) 4.34315 0.186040
\(546\) 0 0
\(547\) 27.1127 1.15926 0.579628 0.814881i \(-0.303198\pi\)
0.579628 + 0.814881i \(0.303198\pi\)
\(548\) 0 0
\(549\) 4.94975 8.57321i 0.211250 0.365896i
\(550\) 0 0
\(551\) −9.89949 17.1464i −0.421733 0.730462i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5.24264 9.08052i −0.222538 0.385447i
\(556\) 0 0
\(557\) 15.8492 27.4517i 0.671554 1.16317i −0.305909 0.952061i \(-0.598960\pi\)
0.977463 0.211105i \(-0.0677062\pi\)
\(558\) 0 0
\(559\) −4.68629 −0.198209
\(560\) 0 0
\(561\) 2.34315 0.0989277
\(562\) 0 0
\(563\) 19.2426 33.3292i 0.810981 1.40466i −0.101198 0.994866i \(-0.532267\pi\)
0.912178 0.409793i \(-0.134399\pi\)
\(564\) 0 0
\(565\) −3.12132 5.40629i −0.131315 0.227444i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.2426 29.8651i −0.722849 1.25201i −0.959853 0.280503i \(-0.909499\pi\)
0.237004 0.971509i \(-0.423835\pi\)
\(570\) 0 0
\(571\) −10.1421 + 17.5667i −0.424435 + 0.735143i −0.996368 0.0851575i \(-0.972861\pi\)
0.571932 + 0.820301i \(0.306194\pi\)
\(572\) 0 0
\(573\) 14.9706 0.625404
\(574\) 0 0
\(575\) −7.41421 −0.309194
\(576\) 0 0
\(577\) 1.41421 2.44949i 0.0588745 0.101974i −0.835086 0.550119i \(-0.814582\pi\)
0.893960 + 0.448146i \(0.147915\pi\)
\(578\) 0 0
\(579\) −6.41421 11.1097i −0.266566 0.461705i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.58579 7.94282i −0.189924 0.328958i
\(584\) 0 0
\(585\) −1.41421 + 2.44949i −0.0584705 + 0.101274i
\(586\) 0 0
\(587\) 16.8284 0.694584 0.347292 0.937757i \(-0.387101\pi\)
0.347292 + 0.937757i \(0.387101\pi\)
\(588\) 0 0
\(589\) 22.9706 0.946486
\(590\) 0 0
\(591\) −6.53553 + 11.3199i −0.268836 + 0.465638i
\(592\) 0 0
\(593\) 1.48528 + 2.57258i 0.0609932 + 0.105643i 0.894910 0.446247i \(-0.147240\pi\)
−0.833916 + 0.551891i \(0.813907\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.12132 7.13834i −0.168674 0.292153i
\(598\) 0 0
\(599\) 7.00000 12.1244i 0.286012 0.495388i −0.686842 0.726807i \(-0.741004\pi\)
0.972854 + 0.231419i \(0.0743369\pi\)
\(600\) 0 0
\(601\) 19.7574 0.805919 0.402960 0.915218i \(-0.367981\pi\)
0.402960 + 0.915218i \(0.367981\pi\)
\(602\) 0 0
\(603\) −6.82843 −0.278075
\(604\) 0 0
\(605\) −3.50000 + 6.06218i −0.142295 + 0.246463i
\(606\) 0 0
\(607\) −10.7279 18.5813i −0.435433 0.754192i 0.561898 0.827207i \(-0.310071\pi\)
−0.997331 + 0.0730146i \(0.976738\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.8284 25.6836i −0.599894 1.03905i
\(612\) 0 0
\(613\) −18.6569 + 32.3146i −0.753543 + 1.30518i 0.192552 + 0.981287i \(0.438324\pi\)
−0.946095 + 0.323888i \(0.895010\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 35.6985 1.43717 0.718583 0.695441i \(-0.244791\pi\)
0.718583 + 0.695441i \(0.244791\pi\)
\(618\) 0 0
\(619\) 7.05025 12.2114i 0.283374 0.490817i −0.688840 0.724914i \(-0.741880\pi\)
0.972213 + 0.234096i \(0.0752130\pi\)
\(620\) 0 0
\(621\) 3.70711 + 6.42090i 0.148761 + 0.257662i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 5.41421 9.37769i 0.216223 0.374509i
\(628\) 0 0
\(629\) 12.2843 0.489806
\(630\) 0 0
\(631\) 6.68629 0.266177 0.133089 0.991104i \(-0.457511\pi\)
0.133089 + 0.991104i \(0.457511\pi\)
\(632\) 0 0
\(633\) 8.82843 15.2913i 0.350898 0.607774i
\(634\) 0 0
\(635\) 7.07107 + 12.2474i 0.280607 + 0.486025i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.24264 + 9.08052i 0.207396 + 0.359220i
\(640\) 0 0
\(641\) −4.51472 + 7.81972i −0.178321 + 0.308860i −0.941305 0.337556i \(-0.890400\pi\)
0.762985 + 0.646416i \(0.223733\pi\)
\(642\) 0 0
\(643\) 32.2843 1.27317 0.636584 0.771208i \(-0.280347\pi\)
0.636584 + 0.771208i \(0.280347\pi\)
\(644\) 0 0
\(645\) −1.65685 −0.0652386
\(646\) 0 0
\(647\) 17.6569 30.5826i 0.694163 1.20232i −0.276300 0.961072i \(-0.589108\pi\)
0.970462 0.241253i \(-0.0775585\pi\)
\(648\) 0 0
\(649\) 2.82843 + 4.89898i 0.111025 + 0.192302i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.29289 14.3637i −0.324526 0.562096i 0.656890 0.753986i \(-0.271871\pi\)
−0.981416 + 0.191891i \(0.938538\pi\)
\(654\) 0 0
\(655\) 5.65685 9.79796i 0.221032 0.382838i
\(656\) 0 0
\(657\) 4.48528 0.174987
\(658\) 0 0
\(659\) 9.79899 0.381714 0.190857 0.981618i \(-0.438873\pi\)
0.190857 + 0.981618i \(0.438873\pi\)
\(660\) 0 0
\(661\) −17.8787 + 30.9668i −0.695400 + 1.20447i 0.274646 + 0.961546i \(0.411439\pi\)
−0.970046 + 0.242923i \(0.921894\pi\)
\(662\) 0 0
\(663\) −1.65685 2.86976i −0.0643469 0.111452i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.5563 + 23.4803i 0.524904 + 0.909160i
\(668\) 0 0
\(669\) −2.58579 + 4.47871i −0.0999723 + 0.173157i
\(670\) 0 0
\(671\) 19.7990 0.764332
\(672\) 0 0
\(673\) 40.8284 1.57382 0.786910 0.617068i \(-0.211680\pi\)
0.786910 + 0.617068i \(0.211680\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −21.4853 37.2136i −0.825746 1.43023i −0.901347 0.433097i \(-0.857421\pi\)
0.0756010 0.997138i \(-0.475912\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.00000 + 3.46410i 0.0766402 + 0.132745i
\(682\) 0 0
\(683\) 1.22183 2.11626i 0.0467518 0.0809766i −0.841703 0.539942i \(-0.818446\pi\)
0.888454 + 0.458965i \(0.151780\pi\)
\(684\) 0 0
\(685\) 7.89949 0.301824
\(686\) 0 0
\(687\) −5.41421 −0.206565
\(688\) 0 0
\(689\) −6.48528 + 11.2328i −0.247070 + 0.427937i
\(690\) 0 0
\(691\) 9.63604 + 16.6901i 0.366572 + 0.634922i 0.989027 0.147734i \(-0.0471979\pi\)
−0.622455 + 0.782656i \(0.713865\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.77817 6.54399i −0.143314 0.248228i
\(696\) 0 0
\(697\) −1.17157 + 2.02922i −0.0443765 + 0.0768623i
\(698\) 0 0
\(699\) 2.72792 0.103179
\(700\) 0 0
\(701\) −30.9706 −1.16974 −0.584871 0.811126i \(-0.698855\pi\)
−0.584871 + 0.811126i \(0.698855\pi\)
\(702\) 0 0
\(703\) 28.3848 49.1639i 1.07055 1.85425i
\(704\) 0 0
\(705\) −5.24264 9.08052i −0.197449 0.341992i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.34315 7.52255i −0.163110 0.282515i 0.772872 0.634562i \(-0.218819\pi\)
−0.935983 + 0.352046i \(0.885486\pi\)
\(710\) 0 0
\(711\) 5.00000 8.66025i 0.187515 0.324785i
\(712\) 0 0
\(713\) −31.4558 −1.17803
\(714\) 0 0
\(715\) −5.65685 −0.211554
\(716\) 0 0
\(717\) 9.82843 17.0233i 0.367049 0.635748i
\(718\) 0 0
\(719\) −6.24264 10.8126i −0.232811 0.403241i 0.725823 0.687881i \(-0.241459\pi\)
−0.958634 + 0.284641i \(0.908126\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.7071 25.4735i −0.546963 0.947368i
\(724\) 0 0
\(725\) −1.82843 + 3.16693i −0.0679061 + 0.117617i
\(726\) 0 0
\(727\) −43.5980 −1.61696 −0.808480 0.588524i \(-0.799709\pi\)
−0.808480 + 0.588524i \(0.799709\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.970563 1.68106i 0.0358976 0.0621764i
\(732\) 0 0
\(733\) −12.2426 21.2049i −0.452192 0.783220i 0.546330 0.837570i \(-0.316025\pi\)
−0.998522 + 0.0543503i \(0.982691\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.82843 11.8272i −0.251528 0.435660i
\(738\) 0 0
\(739\) 3.31371 5.73951i 0.121897 0.211131i −0.798619 0.601837i \(-0.794436\pi\)
0.920516 + 0.390706i \(0.127769\pi\)
\(740\) 0 0
\(741\) −15.3137 −0.562563
\(742\) 0 0
\(743\) −18.0416 −0.661883 −0.330942 0.943651i \(-0.607366\pi\)
−0.330942 + 0.943651i \(0.607366\pi\)
\(744\) 0 0
\(745\) −9.82843 + 17.0233i −0.360086 + 0.623687i
\(746\) 0 0
\(747\) 2.41421 + 4.18154i 0.0883315 + 0.152995i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.82843 11.8272i −0.249173 0.431580i 0.714124 0.700020i \(-0.246825\pi\)
−0.963297 + 0.268440i \(0.913492\pi\)
\(752\) 0 0
\(753\) −5.75736 + 9.97204i −0.209810 + 0.363401i
\(754\) 0 0
\(755\) −5.31371 −0.193386
\(756\) 0 0
\(757\) 0.828427 0.0301097 0.0150548 0.999887i \(-0.495208\pi\)
0.0150548 + 0.999887i \(0.495208\pi\)
\(758\) 0 0
\(759\) −7.41421 + 12.8418i −0.269119 + 0.466128i
\(760\) 0 0
\(761\) −3.24264 5.61642i −0.117546 0.203595i 0.801249 0.598331i \(-0.204169\pi\)
−0.918794 + 0.394736i \(0.870836\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.585786 1.01461i −0.0211792 0.0366834i
\(766\) 0 0
\(767\) 4.00000 6.92820i 0.144432 0.250163i
\(768\) 0 0
\(769\) −13.2132 −0.476480 −0.238240 0.971206i \(-0.576571\pi\)
−0.238240 + 0.971206i \(0.576571\pi\)
\(770\) 0 0
\(771\) −21.3137 −0.767594
\(772\) 0 0
\(773\) −18.7279 + 32.4377i −0.673597 + 1.16670i 0.303280 + 0.952901i \(0.401918\pi\)
−0.976877 + 0.213802i \(0.931415\pi\)
\(774\) 0 0
\(775\) −2.12132 3.67423i −0.0762001 0.131982i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.41421 + 9.37769i 0.193984 + 0.335991i
\(780\) 0 0
\(781\) −10.4853 + 18.1610i −0.375193 + 0.649853i
\(782\) 0 0
\(783\) 3.65685 0.130685
\(784\) 0 0
\(785\) −10.1421 −0.361988
\(786\) 0 0
\(787\) 19.5563 33.8726i 0.697109 1.20743i −0.272356 0.962197i \(-0.587803\pi\)
0.969465 0.245231i \(-0.0788638\pi\)
\(788\) 0 0
\(789\) 8.53553 + 14.7840i 0.303873 + 0.526324i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −14.0000 24.2487i −0.497155 0.861097i
\(794\) 0 0
\(795\) −2.29289 + 3.97141i −0.0813205 + 0.140851i
\(796\) 0 0
\(797\) 15.1127 0.535319 0.267660 0.963514i \(-0.413750\pi\)
0.267660 + 0.963514i \(0.413750\pi\)
\(798\) 0 0
\(799\) 12.2843 0.434586
\(800\) 0 0
\(801\) 2.41421 4.18154i 0.0853020 0.147747i
\(802\) 0 0
\(803\) 4.48528 + 7.76874i 0.158282 + 0.274153i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.58579 + 13.1390i 0.267032 + 0.462514i
\(808\) 0 0
\(809\) −2.75736 + 4.77589i −0.0969436 + 0.167911i −0.910418 0.413689i \(-0.864240\pi\)
0.813475 + 0.581601i \(0.197573\pi\)
\(810\) 0 0
\(811\) −1.89949 −0.0667003 −0.0333501 0.999444i \(-0.510618\pi\)
−0.0333501 + 0.999444i \(0.510618\pi\)
\(812\) 0 0
\(813\) 20.2426 0.709940
\(814\) 0 0
\(815\) −9.07107 + 15.7116i −0.317746 + 0.550352i
\(816\) 0 0
\(817\) −4.48528 7.76874i −0.156920 0.271794i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20.2132 35.0103i −0.705446 1.22187i −0.966530 0.256552i \(-0.917414\pi\)
0.261085 0.965316i \(-0.415920\pi\)
\(822\) 0 0
\(823\) −12.7279 + 22.0454i −0.443667 + 0.768455i −0.997958 0.0638684i \(-0.979656\pi\)
0.554291 + 0.832323i \(0.312990\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) −14.2426 −0.495265 −0.247633 0.968854i \(-0.579653\pi\)
−0.247633 + 0.968854i \(0.579653\pi\)
\(828\) 0 0
\(829\) −1.53553 + 2.65962i −0.0533313 + 0.0923725i −0.891459 0.453102i \(-0.850317\pi\)
0.838127 + 0.545475i \(0.183651\pi\)
\(830\) 0 0
\(831\) −2.65685 4.60181i −0.0921653 0.159635i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 13.8564i −0.276851 0.479521i
\(836\) 0 0
\(837\) −2.12132 + 3.67423i −0.0733236 + 0.127000i
\(838\) 0 0
\(839\) 32.4853 1.12152 0.560758 0.827980i \(-0.310510\pi\)
0.560758 + 0.827980i \(0.310510\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) 1.48528 2.57258i 0.0511558 0.0886045i
\(844\) 0 0
\(845\) −2.50000 4.33013i −0.0860026 0.148961i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.24264 + 7.34847i 0.145607 + 0.252199i
\(850\) 0 0
\(851\) −38.8701 + 67.3249i −1.33245 + 2.30787i
\(852\) 0 0
\(853\) 40.2843 1.37931 0.689654 0.724139i \(-0.257763\pi\)
0.689654 + 0.724139i \(0.257763\pi\)
\(854\) 0 0
\(855\) −5.41421 −0.185162
\(856\) 0 0
\(857\) 12.7279 22.0454i 0.434778 0.753057i −0.562500 0.826797i \(-0.690160\pi\)
0.997277 + 0.0737406i \(0.0234937\pi\)
\(858\) 0 0
\(859\) −5.05025 8.74729i −0.172312 0.298454i 0.766916 0.641748i \(-0.221791\pi\)
−0.939228 + 0.343294i \(0.888457\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.9497 + 31.0899i 0.611017 + 1.05831i 0.991069 + 0.133347i \(0.0425724\pi\)
−0.380053 + 0.924965i \(0.624094\pi\)
\(864\) 0 0
\(865\) −7.07107 + 12.2474i −0.240424 + 0.416426i
\(866\) 0 0
\(867\) −15.6274 −0.530735
\(868\) 0 0
\(869\) 20.0000 0.678454
\(870\) 0 0
\(871\) −9.65685 + 16.7262i −0.327210 + 0.566744i
\(872\) 0 0
\(873\) −2.00000 3.46410i −0.0676897 0.117242i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 23.4853 + 40.6777i 0.793042 + 1.37359i 0.924075 + 0.382210i \(0.124837\pi\)
−0.131034 + 0.991378i \(0.541830\pi\)
\(878\) 0 0
\(879\) 1.82843 3.16693i 0.0616713 0.106818i
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) −16.9706 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(884\) 0 0
\(885\) 1.41421 2.44949i 0.0475383 0.0823387i
\(886\) 0 0
\(887\) 13.5858 + 23.5313i 0.456166 + 0.790103i 0.998754 0.0498959i \(-0.0158890\pi\)
−0.542588 + 0.839999i \(0.682556\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.00000 + 1.73205i 0.0335013 + 0.0580259i
\(892\) 0 0
\(893\) 28.3848 49.1639i 0.949860 1.64521i
\(894\) 0 0
\(895\) 10.4853 0.350484
\(896\) 0 0
\(897\) 20.9706 0.700187
\(898\) 0 0
\(899\) −7.75736 + 13.4361i −0.258722 + 0.448120i
\(900\) 0 0
\(901\) −2.68629 4.65279i −0.0894933 0.155007i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.1213 + 20.9947i 0.402926 + 0.697889i
\(906\) 0 0
\(907\) −16.8284 + 29.1477i −0.558779 + 0.967833i 0.438820 + 0.898575i \(0.355397\pi\)
−0.997599 + 0.0692582i \(0.977937\pi\)
\(908\) 0 0
\(909\) 11.6569 0.386633
\(910\) 0 0
\(911\) −47.9411 −1.58836 −0.794180 0.607682i \(-0.792099\pi\)
−0.794180 + 0.607682i \(0.792099\pi\)
\(912\) 0 0
\(913\) −4.82843 + 8.36308i −0.159798 + 0.276778i
\(914\) 0 0
\(915\) −4.94975 8.57321i −0.163634 0.283422i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.1421 24.4949i −0.466506 0.808012i 0.532762 0.846265i \(-0.321154\pi\)
−0.999268 + 0.0382530i \(0.987821\pi\)
\(920\) 0 0
\(921\) −0.828427 + 1.43488i −0.0272976 + 0.0472808i
\(922\) 0 0
\(923\) 29.6569 0.976167
\(924\) 0 0
\(925\) −10.4853 −0.344754
\(926\) 0 0
\(927\) −1.41421 + 2.44949i −0.0464489 + 0.0804518i
\(928\) 0 0
\(929\) −9.58579 16.6031i −0.314499 0.544729i 0.664832 0.746993i \(-0.268503\pi\)
−0.979331 + 0.202264i \(0.935170\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −4.34315 7.52255i −0.142188 0.246277i
\(934\) 0 0
\(935\) 1.17157 2.02922i 0.0383145 0.0663627i
\(936\) 0 0
\(937\) −17.6569 −0.576824 −0.288412 0.957506i \(-0.593127\pi\)
−0.288412 + 0.957506i \(0.593127\pi\)
\(938\) 0 0
\(939\) 28.4853 0.929582
\(940\) 0 0
\(941\) 25.6274 44.3880i 0.835430 1.44701i −0.0582500 0.998302i \(-0.518552\pi\)
0.893680 0.448705i \(-0.148115\pi\)
\(942\) 0 0
\(943\) −7.41421 12.8418i −0.241440 0.418186i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.4645 19.8570i −0.372545 0.645267i 0.617411 0.786641i \(-0.288181\pi\)
−0.989956 + 0.141374i \(0.954848\pi\)
\(948\) 0 0
\(949\) 6.34315 10.9867i 0.205907 0.356642i
\(950\) 0 0
\(951\) 0.100505 0.00325910
\(952\) 0 0
\(953\) 46.0416 1.49143 0.745717 0.666262i \(-0.232107\pi\)
0.745717 + 0.666262i \(0.232107\pi\)
\(954\) 0 0
\(955\) 7.48528 12.9649i 0.242218 0.419534i
\(956\) 0 0
\(957\) 3.65685 + 6.33386i 0.118209 + 0.204745i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 6.50000 + 11.2583i 0.209677 + 0.363172i
\(962\) 0 0
\(963\) −2.53553 + 4.39167i −0.0817064 + 0.141520i
\(964\) 0 0
\(965\) −12.8284 −0.412962
\(966\) 0 0
\(967\) −20.2010 −0.649621 −0.324810 0.945779i \(-0.605300\pi\)
−0.324810 + 0.945779i \(0.605300\pi\)
\(968\) 0 0
\(969\) 3.17157 5.49333i 0.101886 0.176471i
\(970\) 0 0
\(971\) −10.2426 17.7408i −0.328702 0.569329i 0.653553 0.756881i \(-0.273278\pi\)
−0.982255 + 0.187553i \(0.939945\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.41421 + 2.44949i 0.0452911 + 0.0784465i
\(976\) 0 0
\(977\) −15.0208 + 26.0168i −0.480558 + 0.832352i −0.999751 0.0223055i \(-0.992899\pi\)
0.519193 + 0.854657i \(0.326233\pi\)
\(978\) 0 0
\(979\) 9.65685 0.308634
\(980\) 0 0
\(981\) −4.34315 −0.138666
\(982\) 0 0
\(983\) −27.7990 + 48.1493i −0.886650 + 1.53572i −0.0428394 + 0.999082i \(0.513640\pi\)
−0.843811 + 0.536641i \(0.819693\pi\)
\(984\) 0 0
\(985\) 6.53553 + 11.3199i 0.208239 + 0.360681i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.14214 + 10.6385i 0.195309 + 0.338284i
\(990\) 0 0
\(991\) 5.65685 9.79796i 0.179696 0.311242i −0.762080 0.647482i \(-0.775822\pi\)
0.941776 + 0.336240i \(0.109155\pi\)
\(992\) 0 0
\(993\) −34.6274 −1.09887
\(994\) 0 0
\(995\) −8.24264 −0.261309
\(996\) 0 0
\(997\) −1.65685 + 2.86976i −0.0524731 + 0.0908861i −0.891069 0.453868i \(-0.850044\pi\)
0.838596 + 0.544754i \(0.183377\pi\)
\(998\) 0 0
\(999\) 5.24264 + 9.08052i 0.165870 + 0.287295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.q.p.361.1 4
7.2 even 3 inner 2940.2.q.p.961.1 4
7.3 odd 6 2940.2.a.o.1.2 2
7.4 even 3 2940.2.a.q.1.1 yes 2
7.5 odd 6 2940.2.q.r.961.2 4
7.6 odd 2 2940.2.q.r.361.2 4
21.11 odd 6 8820.2.a.bm.1.1 2
21.17 even 6 8820.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.2.a.o.1.2 2 7.3 odd 6
2940.2.a.q.1.1 yes 2 7.4 even 3
2940.2.q.p.361.1 4 1.1 even 1 trivial
2940.2.q.p.961.1 4 7.2 even 3 inner
2940.2.q.r.361.2 4 7.6 odd 2
2940.2.q.r.961.2 4 7.5 odd 6
8820.2.a.bh.1.2 2 21.17 even 6
8820.2.a.bm.1.1 2 21.11 odd 6