L(s) = 1 | − 3·9-s − 8·17-s + 6·23-s + 9·25-s + 18·31-s + 4·41-s − 24·47-s − 14·49-s − 6·71-s + 12·73-s + 12·79-s + 10·89-s − 6·97-s + 2·113-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + ⋯ |
L(s) = 1 | − 9-s − 1.94·17-s + 1.25·23-s + 9/5·25-s + 3.23·31-s + 0.624·41-s − 3.50·47-s − 2·49-s − 0.712·71-s + 1.40·73-s + 1.35·79-s + 1.05·89-s − 0.609·97-s + 0.188·113-s − 0.0909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7929856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7929856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.706864350\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.706864350\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392086100499182561755264752734, −8.750105836294209663413163887679, −8.315054346767562433101291700044, −8.005789743318480357438719149980, −7.55659931333735151236065809675, −6.82977912880411798063043168642, −6.65307895519457746416621411038, −6.38118540008766124118658620522, −6.22259317571853782387833088253, −5.38967428685759058803036258059, −4.91260001559214617069605785547, −4.73170526063415830280671752970, −4.56250614823487720188118352618, −3.75627577642522841313900165017, −3.07798658763287426211704071760, −2.97491128041184255148985677765, −2.52145535295954422830229438274, −1.86134422251170874896607481034, −1.14513774228869709168742972294, −0.45663135296924132521760790629,
0.45663135296924132521760790629, 1.14513774228869709168742972294, 1.86134422251170874896607481034, 2.52145535295954422830229438274, 2.97491128041184255148985677765, 3.07798658763287426211704071760, 3.75627577642522841313900165017, 4.56250614823487720188118352618, 4.73170526063415830280671752970, 4.91260001559214617069605785547, 5.38967428685759058803036258059, 6.22259317571853782387833088253, 6.38118540008766124118658620522, 6.65307895519457746416621411038, 6.82977912880411798063043168642, 7.55659931333735151236065809675, 8.005789743318480357438719149980, 8.315054346767562433101291700044, 8.750105836294209663413163887679, 9.392086100499182561755264752734