| L(s) = 1 | − 8·7-s + 5·9-s − 16·17-s + 10·23-s + 25-s − 2·31-s + 12·41-s + 24·47-s + 34·49-s − 40·63-s − 10·71-s + 20·73-s + 4·79-s + 16·81-s + 10·89-s + 26·97-s + 32·103-s + 2·113-s + 128·119-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 80·153-s + ⋯ |
| L(s) = 1 | − 3.02·7-s + 5/3·9-s − 3.88·17-s + 2.08·23-s + 1/5·25-s − 0.359·31-s + 1.87·41-s + 3.50·47-s + 34/7·49-s − 5.03·63-s − 1.18·71-s + 2.34·73-s + 0.450·79-s + 16/9·81-s + 1.05·89-s + 2.63·97-s + 3.15·103-s + 0.188·113-s + 11.7·119-s − 0.0909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 6.46·153-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7929856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7929856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.523183450\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.523183450\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.113943466552335041513281212769, −9.020224640978495106574542353385, −8.420175436172294189546635984748, −7.50720547562015193116669191754, −7.31084526764459981170296496896, −7.01013391649383306285126929956, −6.70416908514197399734706205147, −6.51769316207722534556774044022, −6.00185675616932434152050289569, −5.84553825948189248544894515911, −4.78331199158964104828168893468, −4.72123075062595145467840419124, −4.22609227841717990764451898010, −3.73778788281334142816937276793, −3.50284619749260147525015325103, −2.80782627188277772139681244553, −2.28818628310804036610994582720, −2.20835130084077110730260248257, −0.887982755739150167773539801239, −0.50953367031073064800275828243,
0.50953367031073064800275828243, 0.887982755739150167773539801239, 2.20835130084077110730260248257, 2.28818628310804036610994582720, 2.80782627188277772139681244553, 3.50284619749260147525015325103, 3.73778788281334142816937276793, 4.22609227841717990764451898010, 4.72123075062595145467840419124, 4.78331199158964104828168893468, 5.84553825948189248544894515911, 6.00185675616932434152050289569, 6.51769316207722534556774044022, 6.70416908514197399734706205147, 7.01013391649383306285126929956, 7.31084526764459981170296496896, 7.50720547562015193116669191754, 8.420175436172294189546635984748, 9.020224640978495106574542353385, 9.113943466552335041513281212769