L(s) = 1 | + 2·2-s − 2·3-s + 4-s − 4·6-s + 2·7-s + 3·9-s + 4·11-s − 2·12-s − 2·13-s + 4·14-s + 16-s + 4·17-s + 6·18-s − 4·21-s + 8·22-s + 8·23-s − 10·25-s − 4·26-s − 4·27-s + 2·28-s + 4·29-s − 8·31-s − 2·32-s − 8·33-s + 8·34-s + 3·36-s − 4·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 1/2·4-s − 1.63·6-s + 0.755·7-s + 9-s + 1.20·11-s − 0.577·12-s − 0.554·13-s + 1.06·14-s + 1/4·16-s + 0.970·17-s + 1.41·18-s − 0.872·21-s + 1.70·22-s + 1.66·23-s − 2·25-s − 0.784·26-s − 0.769·27-s + 0.377·28-s + 0.742·29-s − 1.43·31-s − 0.353·32-s − 1.39·33-s + 1.37·34-s + 1/2·36-s − 0.657·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.241654447\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.241654447\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11879618305232732790366468940, −11.91778421432812333688761023369, −11.29518608843858614815163999582, −10.93021901693832264467984756681, −10.55765662806467945537028057206, −9.868129868172996668906535224299, −9.226081946387546687606087650199, −9.083653609151694394209207435823, −8.035619877352594052656783644743, −7.54413780415935792002410909489, −7.13600036933454380613210868054, −6.50523871037060419535490232534, −5.71245602426191992357572839372, −5.62715207324924267832557476789, −4.85387741242917259082489195629, −4.63869215328836944881622050919, −3.81564192422094497201229732335, −3.54290927457861224230656796089, −2.14157049850050474625482236726, −1.13885815283392249125382284398,
1.13885815283392249125382284398, 2.14157049850050474625482236726, 3.54290927457861224230656796089, 3.81564192422094497201229732335, 4.63869215328836944881622050919, 4.85387741242917259082489195629, 5.62715207324924267832557476789, 5.71245602426191992357572839372, 6.50523871037060419535490232534, 7.13600036933454380613210868054, 7.54413780415935792002410909489, 8.035619877352594052656783644743, 9.083653609151694394209207435823, 9.226081946387546687606087650199, 9.868129868172996668906535224299, 10.55765662806467945537028057206, 10.93021901693832264467984756681, 11.29518608843858614815163999582, 11.91778421432812333688761023369, 12.11879618305232732790366468940