L(s) = 1 | + 3·5-s + 7-s − 9·11-s − 6·13-s + 12·17-s − 9·23-s + 5·25-s + 18·29-s − 9·31-s + 3·35-s + 2·37-s − 3·41-s − 10·43-s − 6·47-s − 6·49-s − 27·55-s + 6·59-s − 24·61-s − 18·65-s − 2·67-s − 9·77-s − 14·79-s + 6·83-s + 36·85-s − 18·89-s − 6·91-s − 12·97-s + ⋯ |
L(s) = 1 | + 1.34·5-s + 0.377·7-s − 2.71·11-s − 1.66·13-s + 2.91·17-s − 1.87·23-s + 25-s + 3.34·29-s − 1.61·31-s + 0.507·35-s + 0.328·37-s − 0.468·41-s − 1.52·43-s − 0.875·47-s − 6/7·49-s − 3.64·55-s + 0.781·59-s − 3.07·61-s − 2.23·65-s − 0.244·67-s − 1.02·77-s − 1.57·79-s + 0.658·83-s + 3.90·85-s − 1.90·89-s − 0.628·91-s − 1.21·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.542462125\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.542462125\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.528603442246488185769251734189, −8.564139481254832215585719344567, −8.477890694291114219936246941255, −7.85377480890382460872734237911, −7.83183766628998824800506525076, −7.46023629192446959198221374310, −7.00423361669982307031468396996, −6.24133944816750565531342282944, −6.10985067621884162647043114856, −5.52857665224749645380087159067, −5.25267778488987901645138101244, −4.92960570054791929779174645553, −4.79567275951271402140185945471, −3.95213466285539173409362591479, −3.06282524784053394291760056659, −2.88768169706976723533806931641, −2.65329439272408476644445287564, −1.74010894474790852585693735195, −1.60805998744677780583108325499, −0.40003101924768251832120590587,
0.40003101924768251832120590587, 1.60805998744677780583108325499, 1.74010894474790852585693735195, 2.65329439272408476644445287564, 2.88768169706976723533806931641, 3.06282524784053394291760056659, 3.95213466285539173409362591479, 4.79567275951271402140185945471, 4.92960570054791929779174645553, 5.25267778488987901645138101244, 5.52857665224749645380087159067, 6.10985067621884162647043114856, 6.24133944816750565531342282944, 7.00423361669982307031468396996, 7.46023629192446959198221374310, 7.83183766628998824800506525076, 7.85377480890382460872734237911, 8.477890694291114219936246941255, 8.564139481254832215585719344567, 9.528603442246488185769251734189