L(s) = 1 | − 9-s − 4·13-s + 2·17-s + 2·19-s − 25-s − 24·43-s + 2·47-s + 13·49-s + 6·53-s − 16·59-s − 4·67-s + 81-s + 16·83-s + 32·89-s − 8·101-s − 4·103-s + 4·117-s − 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 2·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.10·13-s + 0.485·17-s + 0.458·19-s − 1/5·25-s − 3.65·43-s + 0.291·47-s + 13/7·49-s + 0.824·53-s − 2.08·59-s − 0.488·67-s + 1/9·81-s + 1.75·83-s + 3.39·89-s − 0.796·101-s − 0.394·103-s + 0.369·117-s − 0.272·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.161·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4161600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4161600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.424921772\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.424921772\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.436824266306539077115739299471, −8.946849259412356435270982116753, −8.411663382880398183010252755110, −8.340763559740114388860375945700, −7.64567750442555435173031308339, −7.38601109958429232862615806097, −7.18878085217130863602039753167, −6.39714027920381571725188022968, −6.35081967552229530508156187663, −5.72866231497059758665447994214, −5.18771117995872085159798708051, −5.02357387737898518869529491446, −4.57850760931319014195924351421, −3.96285336808496329123534989509, −3.30874356180755207220779417608, −3.23671207234235473722734977833, −2.41952786674362442059026864474, −2.03142965843514793218355429492, −1.31759160324951712304812672838, −0.43571308450040052551313773415,
0.43571308450040052551313773415, 1.31759160324951712304812672838, 2.03142965843514793218355429492, 2.41952786674362442059026864474, 3.23671207234235473722734977833, 3.30874356180755207220779417608, 3.96285336808496329123534989509, 4.57850760931319014195924351421, 5.02357387737898518869529491446, 5.18771117995872085159798708051, 5.72866231497059758665447994214, 6.35081967552229530508156187663, 6.39714027920381571725188022968, 7.18878085217130863602039753167, 7.38601109958429232862615806097, 7.64567750442555435173031308339, 8.340763559740114388860375945700, 8.411663382880398183010252755110, 8.946849259412356435270982116753, 9.436824266306539077115739299471