Properties

Label 2040.2.h.e.1801.1
Level $2040$
Weight $2$
Character 2040.1801
Analytic conductor $16.289$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,2,Mod(1801,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-2,0,0,0,-4,0,2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1801
Dual form 2040.2.h.e.1801.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.00000i q^{5} -1.00000i q^{7} -1.00000 q^{9} +5.00000i q^{11} -2.00000 q^{13} +1.00000 q^{15} +(1.00000 - 4.00000i) q^{17} +1.00000 q^{19} -1.00000 q^{21} -1.00000 q^{25} +1.00000i q^{27} +7.00000i q^{29} +5.00000 q^{33} +1.00000 q^{35} +5.00000i q^{37} +2.00000i q^{39} +9.00000i q^{41} -12.0000 q^{43} -1.00000i q^{45} +1.00000 q^{47} +6.00000 q^{49} +(-4.00000 - 1.00000i) q^{51} +3.00000 q^{53} -5.00000 q^{55} -1.00000i q^{57} -8.00000 q^{59} +8.00000i q^{61} +1.00000i q^{63} -2.00000i q^{65} -2.00000 q^{67} +12.0000i q^{71} +11.0000i q^{73} +1.00000i q^{75} +5.00000 q^{77} -10.0000i q^{79} +1.00000 q^{81} +8.00000 q^{83} +(4.00000 + 1.00000i) q^{85} +7.00000 q^{87} +16.0000 q^{89} +2.00000i q^{91} +1.00000i q^{95} -10.0000i q^{97} -5.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 4 q^{13} + 2 q^{15} + 2 q^{17} + 2 q^{19} - 2 q^{21} - 2 q^{25} + 10 q^{33} + 2 q^{35} - 24 q^{43} + 2 q^{47} + 12 q^{49} - 8 q^{51} + 6 q^{53} - 10 q^{55} - 16 q^{59} - 4 q^{67} + 10 q^{77}+ \cdots + 32 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.00000i 1.50756i 0.657129 + 0.753778i \(0.271771\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 1.00000 4.00000i 0.242536 0.970143i
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.00000i 1.29987i 0.759991 + 0.649934i \(0.225203\pi\)
−0.759991 + 0.649934i \(0.774797\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 5.00000 0.870388
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 5.00000i 0.821995i 0.911636 + 0.410997i \(0.134819\pi\)
−0.911636 + 0.410997i \(0.865181\pi\)
\(38\) 0 0
\(39\) 2.00000i 0.320256i
\(40\) 0 0
\(41\) 9.00000i 1.40556i 0.711405 + 0.702782i \(0.248059\pi\)
−0.711405 + 0.702782i \(0.751941\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) −4.00000 1.00000i −0.560112 0.140028i
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 1.00000i 0.132453i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 8.00000i 1.02430i 0.858898 + 0.512148i \(0.171150\pi\)
−0.858898 + 0.512148i \(0.828850\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 2.00000i 0.248069i
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 11.0000i 1.28745i 0.765256 + 0.643726i \(0.222612\pi\)
−0.765256 + 0.643726i \(0.777388\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) 10.0000i 1.12509i −0.826767 0.562544i \(-0.809823\pi\)
0.826767 0.562544i \(-0.190177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 4.00000 + 1.00000i 0.433861 + 0.108465i
\(86\) 0 0
\(87\) 7.00000 0.750479
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 2.00000i 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000i 0.102598i
\(96\) 0 0
\(97\) 10.0000i 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 0 0
\(99\) 5.00000i 0.502519i
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −2.00000 −0.197066 −0.0985329 0.995134i \(-0.531415\pi\)
−0.0985329 + 0.995134i \(0.531415\pi\)
\(104\) 0 0
\(105\) 1.00000i 0.0975900i
\(106\) 0 0
\(107\) 2.00000i 0.193347i 0.995316 + 0.0966736i \(0.0308203\pi\)
−0.995316 + 0.0966736i \(0.969180\pi\)
\(108\) 0 0
\(109\) 20.0000i 1.91565i 0.287348 + 0.957826i \(0.407226\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 5.00000 0.474579
\(112\) 0 0
\(113\) 8.00000i 0.752577i 0.926503 + 0.376288i \(0.122800\pi\)
−0.926503 + 0.376288i \(0.877200\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −4.00000 1.00000i −0.366679 0.0916698i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 0 0
\(123\) 9.00000 0.811503
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 12.0000i 1.05654i
\(130\) 0 0
\(131\) 20.0000i 1.74741i −0.486458 0.873704i \(-0.661711\pi\)
0.486458 0.873704i \(-0.338289\pi\)
\(132\) 0 0
\(133\) 1.00000i 0.0867110i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 10.0000i 0.848189i 0.905618 + 0.424094i \(0.139408\pi\)
−0.905618 + 0.424094i \(0.860592\pi\)
\(140\) 0 0
\(141\) 1.00000i 0.0842152i
\(142\) 0 0
\(143\) 10.0000i 0.836242i
\(144\) 0 0
\(145\) −7.00000 −0.581318
\(146\) 0 0
\(147\) 6.00000i 0.494872i
\(148\) 0 0
\(149\) 20.0000 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) 0 0
\(153\) −1.00000 + 4.00000i −0.0808452 + 0.323381i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 3.00000i 0.237915i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 25.0000i 1.95815i 0.203497 + 0.979076i \(0.434769\pi\)
−0.203497 + 0.979076i \(0.565231\pi\)
\(164\) 0 0
\(165\) 5.00000i 0.389249i
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 2.00000i 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i 0.928374 + 0.371647i \(0.121207\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(182\) 0 0
\(183\) 8.00000 0.591377
\(184\) 0 0
\(185\) −5.00000 −0.367607
\(186\) 0 0
\(187\) 20.0000 + 5.00000i 1.46254 + 0.365636i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) 10.0000i 0.712470i 0.934396 + 0.356235i \(0.115940\pi\)
−0.934396 + 0.356235i \(0.884060\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i 0.989899 + 0.141776i \(0.0452813\pi\)
−0.989899 + 0.141776i \(0.954719\pi\)
\(200\) 0 0
\(201\) 2.00000i 0.141069i
\(202\) 0 0
\(203\) 7.00000 0.491304
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.00000i 0.345857i
\(210\) 0 0
\(211\) 22.0000i 1.51454i −0.653101 0.757271i \(-0.726532\pi\)
0.653101 0.757271i \(-0.273468\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) 12.0000i 0.818393i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) −2.00000 + 8.00000i −0.134535 + 0.538138i
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 10.0000i 0.663723i −0.943328 0.331862i \(-0.892323\pi\)
0.943328 0.331862i \(-0.107677\pi\)
\(228\) 0 0
\(229\) 9.00000 0.594737 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(230\) 0 0
\(231\) 5.00000i 0.328976i
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 1.00000i 0.0652328i
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) 22.0000 1.42306 0.711531 0.702655i \(-0.248002\pi\)
0.711531 + 0.702655i \(0.248002\pi\)
\(240\) 0 0
\(241\) 14.0000i 0.901819i −0.892570 0.450910i \(-0.851100\pi\)
0.892570 0.450910i \(-0.148900\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 8.00000i 0.506979i
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.00000 4.00000i 0.0626224 0.250490i
\(256\) 0 0
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 0 0
\(261\) 7.00000i 0.433289i
\(262\) 0 0
\(263\) −15.0000 −0.924940 −0.462470 0.886635i \(-0.653037\pi\)
−0.462470 + 0.886635i \(0.653037\pi\)
\(264\) 0 0
\(265\) 3.00000i 0.184289i
\(266\) 0 0
\(267\) 16.0000i 0.979184i
\(268\) 0 0
\(269\) 1.00000i 0.0609711i 0.999535 + 0.0304855i \(0.00970535\pi\)
−0.999535 + 0.0304855i \(0.990295\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 2.00000 0.121046
\(274\) 0 0
\(275\) 5.00000i 0.301511i
\(276\) 0 0
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 9.00000i 0.534994i −0.963559 0.267497i \(-0.913803\pi\)
0.963559 0.267497i \(-0.0861966\pi\)
\(284\) 0 0
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 8.00000i 0.465778i
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000i 0.691669i
\(302\) 0 0
\(303\) 4.00000i 0.229794i
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 2.00000i 0.113776i
\(310\) 0 0
\(311\) 23.0000i 1.30421i 0.758129 + 0.652105i \(0.226114\pi\)
−0.758129 + 0.652105i \(0.773886\pi\)
\(312\) 0 0
\(313\) 5.00000i 0.282617i 0.989966 + 0.141308i \(0.0451309\pi\)
−0.989966 + 0.141308i \(0.954869\pi\)
\(314\) 0 0
\(315\) −1.00000 −0.0563436
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) −35.0000 −1.95962
\(320\) 0 0
\(321\) 2.00000 0.111629
\(322\) 0 0
\(323\) 1.00000 4.00000i 0.0556415 0.222566i
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 20.0000 1.10600
\(328\) 0 0
\(329\) 1.00000i 0.0551318i
\(330\) 0 0
\(331\) −23.0000 −1.26419 −0.632097 0.774889i \(-0.717806\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(332\) 0 0
\(333\) 5.00000i 0.273998i
\(334\) 0 0
\(335\) 2.00000i 0.109272i
\(336\) 0 0
\(337\) 17.0000i 0.926049i −0.886345 0.463025i \(-0.846764\pi\)
0.886345 0.463025i \(-0.153236\pi\)
\(338\) 0 0
\(339\) 8.00000 0.434500
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000i 0.966291i −0.875540 0.483145i \(-0.839494\pi\)
0.875540 0.483145i \(-0.160506\pi\)
\(348\) 0 0
\(349\) −19.0000 −1.01705 −0.508523 0.861048i \(-0.669808\pi\)
−0.508523 + 0.861048i \(0.669808\pi\)
\(350\) 0 0
\(351\) 2.00000i 0.106752i
\(352\) 0 0
\(353\) 19.0000 1.01127 0.505634 0.862748i \(-0.331259\pi\)
0.505634 + 0.862748i \(0.331259\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) −1.00000 + 4.00000i −0.0529256 + 0.211702i
\(358\) 0 0
\(359\) −34.0000 −1.79445 −0.897226 0.441572i \(-0.854421\pi\)
−0.897226 + 0.441572i \(0.854421\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 14.0000i 0.734809i
\(364\) 0 0
\(365\) −11.0000 −0.575766
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 9.00000i 0.468521i
\(370\) 0 0
\(371\) 3.00000i 0.155752i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 14.0000i 0.721037i
\(378\) 0 0
\(379\) 26.0000i 1.33553i −0.744372 0.667765i \(-0.767251\pi\)
0.744372 0.667765i \(-0.232749\pi\)
\(380\) 0 0
\(381\) 12.0000i 0.614779i
\(382\) 0 0
\(383\) −31.0000 −1.58403 −0.792013 0.610504i \(-0.790967\pi\)
−0.792013 + 0.610504i \(0.790967\pi\)
\(384\) 0 0
\(385\) 5.00000i 0.254824i
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.0000 −1.00887
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 9.00000i 0.451697i −0.974162 0.225849i \(-0.927485\pi\)
0.974162 0.225849i \(-0.0725154\pi\)
\(398\) 0 0
\(399\) −1.00000 −0.0500626
\(400\) 0 0
\(401\) 15.0000i 0.749064i 0.927214 + 0.374532i \(0.122197\pi\)
−0.927214 + 0.374532i \(0.877803\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) −25.0000 −1.23920
\(408\) 0 0
\(409\) 17.0000 0.840596 0.420298 0.907386i \(-0.361926\pi\)
0.420298 + 0.907386i \(0.361926\pi\)
\(410\) 0 0
\(411\) 3.00000i 0.147979i
\(412\) 0 0
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 8.00000i 0.392705i
\(416\) 0 0
\(417\) 10.0000 0.489702
\(418\) 0 0
\(419\) 9.00000i 0.439679i −0.975536 0.219839i \(-0.929447\pi\)
0.975536 0.219839i \(-0.0705533\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) −1.00000 −0.0486217
\(424\) 0 0
\(425\) −1.00000 + 4.00000i −0.0485071 + 0.194029i
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 0 0
\(429\) −10.0000 −0.482805
\(430\) 0 0
\(431\) 23.0000i 1.10787i 0.832560 + 0.553936i \(0.186875\pi\)
−0.832560 + 0.553936i \(0.813125\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 7.00000i 0.335624i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000i 0.381819i 0.981608 + 0.190910i \(0.0611437\pi\)
−0.981608 + 0.190910i \(0.938856\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) 16.0000i 0.758473i
\(446\) 0 0
\(447\) 20.0000i 0.945968i
\(448\) 0 0
\(449\) 34.0000i 1.60456i −0.596948 0.802280i \(-0.703620\pi\)
0.596948 0.802280i \(-0.296380\pi\)
\(450\) 0 0
\(451\) −45.0000 −2.11897
\(452\) 0 0
\(453\) 7.00000i 0.328889i
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) −24.0000 −1.12267 −0.561336 0.827588i \(-0.689713\pi\)
−0.561336 + 0.827588i \(0.689713\pi\)
\(458\) 0 0
\(459\) 4.00000 + 1.00000i 0.186704 + 0.0466760i
\(460\) 0 0
\(461\) −32.0000 −1.49039 −0.745194 0.666847i \(-0.767643\pi\)
−0.745194 + 0.666847i \(0.767643\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.0000 0.971764 0.485882 0.874024i \(-0.338498\pi\)
0.485882 + 0.874024i \(0.338498\pi\)
\(468\) 0 0
\(469\) 2.00000i 0.0923514i
\(470\) 0 0
\(471\) 18.0000i 0.829396i
\(472\) 0 0
\(473\) 60.0000i 2.75880i
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −3.00000 −0.137361
\(478\) 0 0
\(479\) 32.0000i 1.46212i −0.682315 0.731059i \(-0.739027\pi\)
0.682315 0.731059i \(-0.260973\pi\)
\(480\) 0 0
\(481\) 10.0000i 0.455961i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) 32.0000i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) 25.0000 1.13054
\(490\) 0 0
\(491\) 4.00000 0.180517 0.0902587 0.995918i \(-0.471231\pi\)
0.0902587 + 0.995918i \(0.471231\pi\)
\(492\) 0 0
\(493\) 28.0000 + 7.00000i 1.26106 + 0.315264i
\(494\) 0 0
\(495\) 5.00000 0.224733
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.0000i 0.624229i −0.950044 0.312115i \(-0.898963\pi\)
0.950044 0.312115i \(-0.101037\pi\)
\(504\) 0 0
\(505\) 4.00000i 0.177998i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 11.0000 0.486611
\(512\) 0 0
\(513\) 1.00000i 0.0441511i
\(514\) 0 0
\(515\) 2.00000i 0.0881305i
\(516\) 0 0
\(517\) 5.00000i 0.219900i
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) 33.0000i 1.44576i −0.690976 0.722878i \(-0.742819\pi\)
0.690976 0.722878i \(-0.257181\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 18.0000i 0.779667i
\(534\) 0 0
\(535\) −2.00000 −0.0864675
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.0000i 1.29219i
\(540\) 0 0
\(541\) 8.00000i 0.343947i 0.985102 + 0.171973i \(0.0550143\pi\)
−0.985102 + 0.171973i \(0.944986\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) −20.0000 −0.856706
\(546\) 0 0
\(547\) 19.0000i 0.812381i −0.913788 0.406191i \(-0.866857\pi\)
0.913788 0.406191i \(-0.133143\pi\)
\(548\) 0 0
\(549\) 8.00000i 0.341432i
\(550\) 0 0
\(551\) 7.00000i 0.298210i
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 0 0
\(555\) 5.00000i 0.212238i
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 5.00000 20.0000i 0.211100 0.844401i
\(562\) 0 0
\(563\) −9.00000 −0.379305 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(564\) 0 0
\(565\) −8.00000 −0.336563
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 2.00000i 0.0836974i −0.999124 0.0418487i \(-0.986675\pi\)
0.999124 0.0418487i \(-0.0133247\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 8.00000i 0.331896i
\(582\) 0 0
\(583\) 15.0000i 0.621237i
\(584\) 0 0
\(585\) 2.00000i 0.0826898i
\(586\) 0 0
\(587\) 37.0000 1.52715 0.763577 0.645717i \(-0.223441\pi\)
0.763577 + 0.645717i \(0.223441\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) 0 0
\(593\) −11.0000 −0.451716 −0.225858 0.974160i \(-0.572519\pi\)
−0.225858 + 0.974160i \(0.572519\pi\)
\(594\) 0 0
\(595\) 1.00000 4.00000i 0.0409960 0.163984i
\(596\) 0 0
\(597\) 4.00000 0.163709
\(598\) 0 0
\(599\) 6.00000 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(600\) 0 0
\(601\) 8.00000i 0.326327i 0.986599 + 0.163163i \(0.0521698\pi\)
−0.986599 + 0.163163i \(0.947830\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) 14.0000i 0.569181i
\(606\) 0 0
\(607\) 13.0000i 0.527654i 0.964570 + 0.263827i \(0.0849848\pi\)
−0.964570 + 0.263827i \(0.915015\pi\)
\(608\) 0 0
\(609\) 7.00000i 0.283654i
\(610\) 0 0
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) 40.0000 1.61558 0.807792 0.589467i \(-0.200662\pi\)
0.807792 + 0.589467i \(0.200662\pi\)
\(614\) 0 0
\(615\) 9.00000i 0.362915i
\(616\) 0 0
\(617\) 32.0000i 1.28827i 0.764911 + 0.644136i \(0.222783\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 14.0000i 0.562708i −0.959604 0.281354i \(-0.909217\pi\)
0.959604 0.281354i \(-0.0907834\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.0000i 0.641026i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 5.00000 0.199681
\(628\) 0 0
\(629\) 20.0000 + 5.00000i 0.797452 + 0.199363i
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 0 0
\(633\) −22.0000 −0.874421
\(634\) 0 0
\(635\) 12.0000i 0.476205i
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 0 0
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) 1.00000i 0.0394976i 0.999805 + 0.0197488i \(0.00628665\pi\)
−0.999805 + 0.0197488i \(0.993713\pi\)
\(642\) 0 0
\(643\) 9.00000i 0.354925i 0.984128 + 0.177463i \(0.0567889\pi\)
−0.984128 + 0.177463i \(0.943211\pi\)
\(644\) 0 0
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 40.0000i 1.57014i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 0 0
\(657\) 11.0000i 0.429151i
\(658\) 0 0
\(659\) −22.0000 −0.856998 −0.428499 0.903542i \(-0.640958\pi\)
−0.428499 + 0.903542i \(0.640958\pi\)
\(660\) 0 0
\(661\) −11.0000 −0.427850 −0.213925 0.976850i \(-0.568625\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 8.00000 + 2.00000i 0.310694 + 0.0776736i
\(664\) 0 0
\(665\) 1.00000 0.0387783
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 6.00000i 0.231973i
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 46.0000i 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 32.0000i 1.22986i 0.788582 + 0.614930i \(0.210816\pi\)
−0.788582 + 0.614930i \(0.789184\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) −10.0000 −0.383201
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 3.00000i 0.114624i
\(686\) 0 0
\(687\) 9.00000i 0.343371i
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 6.00000i 0.228251i −0.993466 0.114125i \(-0.963593\pi\)
0.993466 0.114125i \(-0.0364066\pi\)
\(692\) 0 0
\(693\) −5.00000 −0.189934
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 36.0000 + 9.00000i 1.36360 + 0.340899i
\(698\) 0 0
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 0 0
\(703\) 5.00000i 0.188579i
\(704\) 0 0
\(705\) 1.00000 0.0376622
\(706\) 0 0
\(707\) 4.00000i 0.150435i
\(708\) 0 0
\(709\) 14.0000i 0.525781i −0.964826 0.262891i \(-0.915324\pi\)
0.964826 0.262891i \(-0.0846758\pi\)
\(710\) 0 0
\(711\) 10.0000i 0.375029i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 10.0000 0.373979
\(716\) 0 0
\(717\) 22.0000i 0.821605i
\(718\) 0 0
\(719\) 5.00000i 0.186469i 0.995644 + 0.0932343i \(0.0297206\pi\)
−0.995644 + 0.0932343i \(0.970279\pi\)
\(720\) 0 0
\(721\) 2.00000i 0.0744839i
\(722\) 0 0
\(723\) −14.0000 −0.520666
\(724\) 0 0
\(725\) 7.00000i 0.259973i
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.0000 + 48.0000i −0.443836 + 1.77534i
\(732\) 0 0
\(733\) 12.0000 0.443230 0.221615 0.975134i \(-0.428867\pi\)
0.221615 + 0.975134i \(0.428867\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) 10.0000i 0.368355i
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 2.00000i 0.0734718i
\(742\) 0 0
\(743\) 22.0000i 0.807102i 0.914957 + 0.403551i \(0.132224\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(744\) 0 0
\(745\) 20.0000i 0.732743i
\(746\) 0 0
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 2.00000 0.0730784
\(750\) 0 0
\(751\) 2.00000i 0.0729810i 0.999334 + 0.0364905i \(0.0116179\pi\)
−0.999334 + 0.0364905i \(0.988382\pi\)
\(752\) 0 0
\(753\) 6.00000i 0.218652i
\(754\) 0 0
\(755\) 7.00000i 0.254756i
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) 0 0
\(765\) −4.00000 1.00000i −0.144620 0.0361551i
\(766\) 0 0
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) 30.0000i 1.08042i
\(772\) 0 0
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5.00000i 0.179374i
\(778\) 0 0
\(779\) 9.00000i 0.322458i
\(780\) 0 0
\(781\) −60.0000 −2.14697
\(782\) 0 0
\(783\) −7.00000 −0.250160
\(784\) 0 0
\(785\) 18.0000i 0.642448i
\(786\) 0 0
\(787\) 25.0000i 0.891154i 0.895244 + 0.445577i \(0.147001\pi\)
−0.895244 + 0.445577i \(0.852999\pi\)
\(788\) 0 0
\(789\) 15.0000i 0.534014i
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 16.0000i 0.568177i
\(794\) 0 0
\(795\) 3.00000 0.106399
\(796\) 0 0
\(797\) −47.0000 −1.66483 −0.832413 0.554156i \(-0.813041\pi\)
−0.832413 + 0.554156i \(0.813041\pi\)
\(798\) 0 0
\(799\) 1.00000 4.00000i 0.0353775 0.141510i
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) 0 0
\(803\) −55.0000 −1.94091
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.00000 0.0352017
\(808\) 0 0
\(809\) 6.00000i 0.210949i −0.994422 0.105474i \(-0.966364\pi\)
0.994422 0.105474i \(-0.0336361\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 8.00000i 0.280572i
\(814\) 0 0
\(815\) −25.0000 −0.875712
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) 2.00000i 0.0698857i
\(820\) 0 0
\(821\) 42.0000i 1.46581i 0.680331 + 0.732905i \(0.261836\pi\)
−0.680331 + 0.732905i \(0.738164\pi\)
\(822\) 0 0
\(823\) 17.0000i 0.592583i 0.955098 + 0.296291i \(0.0957499\pi\)
−0.955098 + 0.296291i \(0.904250\pi\)
\(824\) 0 0
\(825\) −5.00000 −0.174078
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) 5.00000 0.173657 0.0868286 0.996223i \(-0.472327\pi\)
0.0868286 + 0.996223i \(0.472327\pi\)
\(830\) 0 0
\(831\) 6.00000 0.208138
\(832\) 0 0
\(833\) 6.00000 24.0000i 0.207888 0.831551i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.0000i 0.932144i 0.884747 + 0.466072i \(0.154331\pi\)
−0.884747 + 0.466072i \(0.845669\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 2.00000i 0.0688837i
\(844\) 0 0
\(845\) 9.00000i 0.309609i
\(846\) 0 0
\(847\) 14.0000i 0.481046i
\(848\) 0 0
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 1.00000i 0.0341993i
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −25.0000 −0.852989 −0.426494 0.904490i \(-0.640252\pi\)
−0.426494 + 0.904490i \(0.640252\pi\)
\(860\) 0 0
\(861\) 9.00000i 0.306719i
\(862\) 0 0
\(863\) 3.00000 0.102121 0.0510606 0.998696i \(-0.483740\pi\)
0.0510606 + 0.998696i \(0.483740\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) −8.00000 + 15.0000i −0.271694 + 0.509427i
\(868\) 0 0
\(869\) 50.0000 1.69613
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) 11.0000i 0.371444i 0.982602 + 0.185722i \(0.0594623\pi\)
−0.982602 + 0.185722i \(0.940538\pi\)
\(878\) 0 0
\(879\) 9.00000i 0.303562i
\(880\) 0 0
\(881\) 49.0000i 1.65085i −0.564510 0.825426i \(-0.690935\pi\)
0.564510 0.825426i \(-0.309065\pi\)
\(882\) 0 0
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 0 0
\(885\) −8.00000 −0.268917
\(886\) 0 0
\(887\) 58.0000i 1.94745i 0.227728 + 0.973725i \(0.426870\pi\)
−0.227728 + 0.973725i \(0.573130\pi\)
\(888\) 0 0
\(889\) 12.0000i 0.402467i
\(890\) 0 0
\(891\) 5.00000i 0.167506i
\(892\) 0 0
\(893\) 1.00000 0.0334637
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 3.00000 12.0000i 0.0999445 0.399778i
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 47.0000i 1.56061i 0.625400 + 0.780305i \(0.284936\pi\)
−0.625400 + 0.780305i \(0.715064\pi\)
\(908\) 0 0
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) 21.0000i 0.695761i 0.937539 + 0.347881i \(0.113099\pi\)
−0.937539 + 0.347881i \(0.886901\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) 0 0
\(915\) 8.00000i 0.264472i
\(916\) 0 0
\(917\) −20.0000 −0.660458
\(918\) 0 0
\(919\) 39.0000 1.28649 0.643246 0.765660i \(-0.277587\pi\)
0.643246 + 0.765660i \(0.277587\pi\)
\(920\) 0 0
\(921\) 16.0000i 0.527218i
\(922\) 0 0
\(923\) 24.0000i 0.789970i
\(924\) 0 0
\(925\) 5.00000i 0.164399i
\(926\) 0 0
\(927\) 2.00000 0.0656886
\(928\) 0 0
\(929\) 41.0000i 1.34517i 0.740022 + 0.672583i \(0.234815\pi\)
−0.740022 + 0.672583i \(0.765185\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 23.0000 0.752986
\(934\) 0 0
\(935\) −5.00000 + 20.0000i −0.163517 + 0.654070i
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 5.00000 0.163169
\(940\) 0 0
\(941\) 50.0000i 1.62995i 0.579494 + 0.814977i \(0.303250\pi\)
−0.579494 + 0.814977i \(0.696750\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 1.00000i 0.0325300i
\(946\) 0 0
\(947\) 6.00000i 0.194974i −0.995237 0.0974869i \(-0.968920\pi\)
0.995237 0.0974869i \(-0.0310804\pi\)
\(948\) 0 0
\(949\) 22.0000i 0.714150i
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) 31.0000 1.00419 0.502094 0.864813i \(-0.332563\pi\)
0.502094 + 0.864813i \(0.332563\pi\)
\(954\) 0 0
\(955\) 24.0000i 0.776622i
\(956\) 0 0
\(957\) 35.0000i 1.13139i
\(958\) 0 0
\(959\) 3.00000i 0.0968751i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 2.00000i 0.0644491i
\(964\) 0 0
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 26.0000 0.836104 0.418052 0.908423i \(-0.362713\pi\)
0.418052 + 0.908423i \(0.362713\pi\)
\(968\) 0 0
\(969\) −4.00000 1.00000i −0.128499 0.0321246i
\(970\) 0 0
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) 0 0
\(975\) 2.00000i 0.0640513i
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 80.0000i 2.55681i
\(980\) 0 0
\(981\) 20.0000i 0.638551i
\(982\) 0 0
\(983\) 32.0000i 1.02064i −0.859984 0.510321i \(-0.829527\pi\)
0.859984 0.510321i \(-0.170473\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) −1.00000 −0.0318304
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 38.0000i 1.20711i −0.797321 0.603555i \(-0.793750\pi\)
0.797321 0.603555i \(-0.206250\pi\)
\(992\) 0 0
\(993\) 23.0000i 0.729883i
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 27.0000i 0.855099i −0.903992 0.427549i \(-0.859377\pi\)
0.903992 0.427549i \(-0.140623\pi\)
\(998\) 0 0
\(999\) −5.00000 −0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.h.e.1801.1 2
3.2 odd 2 6120.2.h.c.1801.1 2
4.3 odd 2 4080.2.h.e.3841.2 2
17.16 even 2 inner 2040.2.h.e.1801.2 yes 2
51.50 odd 2 6120.2.h.c.1801.2 2
68.67 odd 2 4080.2.h.e.3841.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.h.e.1801.1 2 1.1 even 1 trivial
2040.2.h.e.1801.2 yes 2 17.16 even 2 inner
4080.2.h.e.3841.1 2 68.67 odd 2
4080.2.h.e.3841.2 2 4.3 odd 2
6120.2.h.c.1801.1 2 3.2 odd 2
6120.2.h.c.1801.2 2 51.50 odd 2