L(s) = 1 | − i·3-s + i·5-s − i·7-s − 9-s + 5i·11-s − 2·13-s + 15-s + (1 − 4i)17-s + 19-s − 21-s − 25-s + i·27-s + 7i·29-s + 5·33-s + 35-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.447i·5-s − 0.377i·7-s − 0.333·9-s + 1.50i·11-s − 0.554·13-s + 0.258·15-s + (0.242 − 0.970i)17-s + 0.229·19-s − 0.218·21-s − 0.200·25-s + 0.192i·27-s + 1.29i·29-s + 0.870·33-s + 0.169·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.193700872\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193700872\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 + (-1 + 4i)T \) |
good | 7 | \( 1 + iT - 7T^{2} \) |
| 11 | \( 1 - 5iT - 11T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 7iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 5iT - 37T^{2} \) |
| 41 | \( 1 - 9iT - 41T^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 - T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 - 8iT - 61T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 - 11iT - 73T^{2} \) |
| 79 | \( 1 + 10iT - 79T^{2} \) |
| 83 | \( 1 - 8T + 83T^{2} \) |
| 89 | \( 1 - 16T + 89T^{2} \) |
| 97 | \( 1 + 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.436824266306539077115739299471, −8.411663382880398183010252755110, −7.38601109958429232862615806097, −7.18878085217130863602039753167, −6.39714027920381571725188022968, −5.18771117995872085159798708051, −4.57850760931319014195924351421, −3.30874356180755207220779417608, −2.41952786674362442059026864474, −1.31759160324951712304812672838,
0.43571308450040052551313773415, 2.03142965843514793218355429492, 3.23671207234235473722734977833, 3.96285336808496329123534989509, 5.02357387737898518869529491446, 5.72866231497059758665447994214, 6.35081967552229530508156187663, 7.64567750442555435173031308339, 8.340763559740114388860375945700, 8.946849259412356435270982116753