Properties

Label 2-1968-1.1-c1-0-32
Degree $2$
Conductor $1968$
Sign $-1$
Analytic cond. $15.7145$
Root an. cond. $3.96415$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 2·11-s − 13-s − 15-s − 7·17-s − 5·19-s − 2·21-s + 6·23-s − 4·25-s − 27-s − 7·31-s + 2·33-s + 2·35-s − 2·37-s + 39-s + 41-s − 4·43-s + 45-s + 12·47-s − 3·49-s + 7·51-s − 6·53-s − 2·55-s + 5·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s − 0.258·15-s − 1.69·17-s − 1.14·19-s − 0.436·21-s + 1.25·23-s − 4/5·25-s − 0.192·27-s − 1.25·31-s + 0.348·33-s + 0.338·35-s − 0.328·37-s + 0.160·39-s + 0.156·41-s − 0.609·43-s + 0.149·45-s + 1.75·47-s − 3/7·49-s + 0.980·51-s − 0.824·53-s − 0.269·55-s + 0.662·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1968\)    =    \(2^{4} \cdot 3 \cdot 41\)
Sign: $-1$
Analytic conductor: \(15.7145\)
Root analytic conductor: \(3.96415\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1968,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
41 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.854254836977639607550866347797, −8.003031325092420449682750698421, −7.10616315740238742017999604006, −6.42016684201542349324991768856, −5.47955107858208539285719708514, −4.83070569253156695749738552314, −4.03107537860149562958636706208, −2.52375865447385408837459108701, −1.70296665492210811677280010233, 0, 1.70296665492210811677280010233, 2.52375865447385408837459108701, 4.03107537860149562958636706208, 4.83070569253156695749738552314, 5.47955107858208539285719708514, 6.42016684201542349324991768856, 7.10616315740238742017999604006, 8.003031325092420449682750698421, 8.854254836977639607550866347797

Graph of the $Z$-function along the critical line