Properties

Label 2-1862-1.1-c1-0-54
Degree $2$
Conductor $1862$
Sign $-1$
Analytic cond. $14.8681$
Root an. cond. $3.85592$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 3·9-s − 10-s − 5·11-s + 2·13-s + 16-s + 6·17-s − 3·18-s − 19-s − 20-s − 5·22-s − 5·23-s − 4·25-s + 2·26-s − 4·31-s + 32-s + 6·34-s − 3·36-s − 4·37-s − 38-s − 40-s − 4·41-s − 11·43-s − 5·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 9-s − 0.316·10-s − 1.50·11-s + 0.554·13-s + 1/4·16-s + 1.45·17-s − 0.707·18-s − 0.229·19-s − 0.223·20-s − 1.06·22-s − 1.04·23-s − 4/5·25-s + 0.392·26-s − 0.718·31-s + 0.176·32-s + 1.02·34-s − 1/2·36-s − 0.657·37-s − 0.162·38-s − 0.158·40-s − 0.624·41-s − 1.67·43-s − 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1862\)    =    \(2 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(14.8681\)
Root analytic conductor: \(3.85592\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1862,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.533996676394008024675283283549, −8.016528076809825022150973392628, −7.38198996205643046296223203251, −6.15902403346894630494770621050, −5.57912843528416519108890141545, −4.88186262248798429592092971654, −3.63635230249452893543488543793, −3.09289003342780337303183300496, −1.90813661718622831799099531234, 0, 1.90813661718622831799099531234, 3.09289003342780337303183300496, 3.63635230249452893543488543793, 4.88186262248798429592092971654, 5.57912843528416519108890141545, 6.15902403346894630494770621050, 7.38198996205643046296223203251, 8.016528076809825022150973392628, 8.533996676394008024675283283549

Graph of the $Z$-function along the critical line