| L(s) = 1 | + 3·3-s + 3·5-s + 6·9-s − 3·11-s − 13-s + 9·15-s + 6·17-s − 4·19-s + 3·23-s + 5·25-s + 9·27-s − 3·29-s − 10·31-s − 9·33-s − 2·37-s − 3·39-s + 3·41-s + 43-s + 18·45-s + 18·47-s + 18·51-s + 6·53-s − 9·55-s − 12·57-s + 6·59-s + 26·61-s − 3·65-s + ⋯ |
| L(s) = 1 | + 1.73·3-s + 1.34·5-s + 2·9-s − 0.904·11-s − 0.277·13-s + 2.32·15-s + 1.45·17-s − 0.917·19-s + 0.625·23-s + 25-s + 1.73·27-s − 0.557·29-s − 1.79·31-s − 1.56·33-s − 0.328·37-s − 0.480·39-s + 0.468·41-s + 0.152·43-s + 2.68·45-s + 2.62·47-s + 2.52·51-s + 0.824·53-s − 1.21·55-s − 1.58·57-s + 0.781·59-s + 3.32·61-s − 0.372·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(6.395874455\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.395874455\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.444803248046898725972062443729, −9.006892466279282178175879640765, −8.717039056589033700261647410812, −8.612481923755314808691004583157, −7.78879172725979189256679975026, −7.62176417970067082748136768778, −7.24555731338226662547463188010, −6.96630415067636708266318504514, −6.28727758504548404321621562170, −5.66175014176923779218161155225, −5.51517353989944088224359349341, −5.19654731104344314686480371203, −4.23435876004542937315464188037, −4.16456234783465249932817469006, −3.34135657814592957674806550639, −3.10482898655835285615667472816, −2.34443467113015809225062503324, −2.25046092660961627731653106877, −1.66932601825441563141567650067, −0.851548885483323495055053457413,
0.851548885483323495055053457413, 1.66932601825441563141567650067, 2.25046092660961627731653106877, 2.34443467113015809225062503324, 3.10482898655835285615667472816, 3.34135657814592957674806550639, 4.16456234783465249932817469006, 4.23435876004542937315464188037, 5.19654731104344314686480371203, 5.51517353989944088224359349341, 5.66175014176923779218161155225, 6.28727758504548404321621562170, 6.96630415067636708266318504514, 7.24555731338226662547463188010, 7.62176417970067082748136768778, 7.78879172725979189256679975026, 8.612481923755314808691004583157, 8.717039056589033700261647410812, 9.006892466279282178175879640765, 9.444803248046898725972062443729