L(s) = 1 | + 3·4-s − 9-s + 8·11-s + 5·16-s + 2·19-s + 4·29-s − 3·36-s − 12·41-s + 24·44-s − 2·49-s − 8·59-s + 28·61-s + 3·64-s + 6·76-s − 32·79-s + 81-s + 12·89-s − 8·99-s − 20·101-s + 4·109-s + 12·116-s + 26·121-s + 127-s + 131-s + 137-s + 139-s − 5·144-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 1/3·9-s + 2.41·11-s + 5/4·16-s + 0.458·19-s + 0.742·29-s − 1/2·36-s − 1.87·41-s + 3.61·44-s − 2/7·49-s − 1.04·59-s + 3.58·61-s + 3/8·64-s + 0.688·76-s − 3.60·79-s + 1/9·81-s + 1.27·89-s − 0.804·99-s − 1.99·101-s + 0.383·109-s + 1.11·116-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.416·144-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2030625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2030625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.262994841\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.262994841\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.741590522265006566680975132210, −9.481958381483959191976041164347, −8.800574333300306112035418339529, −8.508003813654514723432627106782, −8.333729227939872460370805960175, −7.39527134350166960669800759626, −7.38064736380632376936104902292, −6.72414658981315508780859296814, −6.52381795228938403612505969484, −6.36195998140886769062882542580, −5.66039290577097033882020423551, −5.33334201585904165831097787261, −4.68512884197574406508055658656, −3.92429353251517714504702568086, −3.86597306384345309933285015784, −2.96265959827291455783799455168, −2.87463356098237036622553010111, −1.81657798657046413889704244335, −1.65140732910450831487516863839, −0.860936728894236267564706660240,
0.860936728894236267564706660240, 1.65140732910450831487516863839, 1.81657798657046413889704244335, 2.87463356098237036622553010111, 2.96265959827291455783799455168, 3.86597306384345309933285015784, 3.92429353251517714504702568086, 4.68512884197574406508055658656, 5.33334201585904165831097787261, 5.66039290577097033882020423551, 6.36195998140886769062882542580, 6.52381795228938403612505969484, 6.72414658981315508780859296814, 7.38064736380632376936104902292, 7.39527134350166960669800759626, 8.333729227939872460370805960175, 8.508003813654514723432627106782, 8.800574333300306112035418339529, 9.481958381483959191976041164347, 9.741590522265006566680975132210