L(s) = 1 | + 2-s − 2·3-s − 2·4-s − 2·6-s − 3·8-s + 3·9-s − 8·11-s + 4·12-s + 4·13-s + 16-s − 2·17-s + 3·18-s − 2·19-s − 8·22-s + 2·23-s + 6·24-s + 4·26-s − 4·27-s + 6·29-s − 12·31-s + 2·32-s + 16·33-s − 2·34-s − 6·36-s + 10·37-s − 2·38-s − 8·39-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s − 4-s − 0.816·6-s − 1.06·8-s + 9-s − 2.41·11-s + 1.15·12-s + 1.10·13-s + 1/4·16-s − 0.485·17-s + 0.707·18-s − 0.458·19-s − 1.70·22-s + 0.417·23-s + 1.22·24-s + 0.784·26-s − 0.769·27-s + 1.11·29-s − 2.15·31-s + 0.353·32-s + 2.78·33-s − 0.342·34-s − 36-s + 1.64·37-s − 0.324·38-s − 1.28·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2030625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2030625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.176153345810089195109099619179, −9.157254998676814988792378069843, −8.432102929509929922275826134838, −8.182100186952644210441619611509, −7.67482742530379919124468012861, −7.41471479208256770286099426016, −6.63533759922414518451996517384, −6.36538952888212725836048387460, −5.79875506410425517316478877992, −5.59286474429441944587828071313, −5.04838999753988597928240169900, −4.80528437808611238033786336830, −4.42932977323753465386587912750, −3.99274633237036053211251197976, −3.08920563746680637515058445191, −3.07925704714927071627180892721, −2.03321221382181056788308769045, −1.29945837987532816130365031028, 0, 0,
1.29945837987532816130365031028, 2.03321221382181056788308769045, 3.07925704714927071627180892721, 3.08920563746680637515058445191, 3.99274633237036053211251197976, 4.42932977323753465386587912750, 4.80528437808611238033786336830, 5.04838999753988597928240169900, 5.59286474429441944587828071313, 5.79875506410425517316478877992, 6.36538952888212725836048387460, 6.63533759922414518451996517384, 7.41471479208256770286099426016, 7.67482742530379919124468012861, 8.182100186952644210441619611509, 8.432102929509929922275826134838, 9.157254998676814988792378069843, 9.176153345810089195109099619179