Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 127 x^{2} + 146 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.434868638592$, $\pm0.603761045491$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1834025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $220$ |
Isomorphism classes: | 220 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5605$ | $29756945$ | $151211331280$ | $806173517308025$ | $4297653112551110125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $5580$ | $388702$ | $28388148$ | $2073084756$ | $151334195790$ | $11047400066212$ | $806460144542628$ | $58871586340800046$ | $4297625823688783900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 220 curves (of which all are hyperelliptic):
- $y^2=37 x^6+41 x^5+62 x^4+47 x^3+43 x^2+41 x+44$
- $y^2=5 x^6+41 x^5+41 x^4+42 x^3+50 x^2+21 x+17$
- $y^2=37 x^6+42 x^5+55 x^4+42 x^3+12 x^2+46 x+31$
- $y^2=49 x^6+60 x^5+44 x^4+66 x^3+7 x^2+38 x+40$
- $y^2=15 x^6+5 x^5+5 x^4+41 x^3+60 x^2+27 x+52$
- $y^2=6 x^6+49 x^5+34 x^4+2 x^3+17 x^2+54 x+68$
- $y^2=57 x^6+17 x^5+38 x^4+59 x^3+62 x^2+13 x+9$
- $y^2=25 x^6+59 x^5+49 x^4+48 x^3+36 x^2+15 x+67$
- $y^2=51 x^6+5 x^5+19 x^4+50 x^3+3 x^2+4 x+8$
- $y^2=36 x^6+64 x^5+5 x^4+4 x^3+27 x^2+6 x+44$
- $y^2=19 x^6+49 x^5+47 x^4+x^3+8 x^2+x+41$
- $y^2=18 x^6+18 x^5+32 x^4+55 x^3+54 x^2+26 x+4$
- $y^2=22 x^6+32 x^5+6 x^4+14 x^3+31 x^2+5 x+66$
- $y^2=18 x^6+x^5+55 x^4+46 x^3+10 x^2+67 x+33$
- $y^2=27 x^6+4 x^5+61 x^4+45 x^3+51 x^2+51 x+56$
- $y^2=9 x^6+65 x^5+36 x^4+4 x^3+19 x^2+20 x+44$
- $y^2=31 x^6+45 x^5+64 x^4+60 x^3+70 x^2+10 x+19$
- $y^2=67 x^6+56 x^5+28 x^4+29 x^3+35 x^2+30 x+42$
- $y^2=28 x^6+25 x^5+58 x^4+9 x^3+59 x^2+42 x+5$
- $y^2=52 x^6+68 x^5+3 x^4+5 x^3+41 x^2+17 x+21$
- and 200 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.1834025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ac_ex | $2$ | (not in LMFDB) |