Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 16 x + 137 x^{2} + 944 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.526797928642$, $\pm0.906780198936$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.115225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4579$ | $12175561$ | $42253107136$ | $146718054742249$ | $511136441010231499$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $3500$ | $205732$ | $12108084$ | $714951836$ | $42180969206$ | $2488648276484$ | $146830435568164$ | $8662995783750268$ | $511116755650540700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=4 x^6+44 x^5+12 x^4+36 x^3+4 x^2+20 x+25$
- $y^2=25 x^6+16 x^5+34 x^4+21 x^2+49 x+58$
- $y^2=42 x^6+30 x^5+6 x^4+33 x^3+45 x^2+25 x+24$
- $y^2=47 x^6+11 x^5+53 x^4+37 x^3+50 x^2+2 x+25$
- $y^2=38 x^6+44 x^5+51 x^4+51 x^3+43 x^2+38 x+20$
- $y^2=11 x^6+12 x^5+17 x^4+23 x^3+49 x^2+22 x+25$
- $y^2=17 x^6+33 x^5+9 x^4+12 x^3+39 x^2+49 x+25$
- $y^2=49 x^6+38 x^5+14 x^4+38 x^3+40 x^2+9 x+51$
- $y^2=11 x^6+8 x^5+3 x^4+5 x^2+2 x+13$
- $y^2=20 x^6+29 x^5+x^4+31 x^3+28 x^2+46 x+3$
- $y^2=53 x^6+21 x^5+50 x^4+9 x^3+21 x^2+32 x+16$
- $y^2=13 x^6+47 x^5+40 x^4+51 x^3+50 x^2+56 x+7$
- $y^2=46 x^6+11 x^5+10 x^4+53 x^3+x^2+18 x+20$
- $y^2=15 x^6+15 x^5+8 x^4+51 x^3+30 x^2+53 x+16$
- $y^2=46 x^6+5 x^5+11 x^4+13 x^3+18 x^2+38 x+33$
- $y^2=57 x^6+9 x^5+43 x^4+15 x^3+8 x^2+46 x+18$
- $y^2=38 x^6+35 x^5+36 x^4+10 x^3+30 x^2+58 x+45$
- $y^2=25 x^6+10 x^5+54 x^4+6 x^3+45 x^2+39 x+38$
- $y^2=36 x^6+29 x^5+54 x^4+25 x^3+35 x^2+11 x+2$
- $y^2=21 x^6+46 x^5+25 x^4+30 x^3+24 x^2+40 x+14$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.115225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.aq_fh | $2$ | (not in LMFDB) |