L(s) = 1 | − 3·5-s + 2·7-s − 3·11-s − 2·13-s − 3·17-s + 3·19-s − 9·23-s − 6·29-s − 4·31-s − 6·35-s − 6·41-s + 5·43-s − 9·47-s − 11·49-s − 3·53-s + 9·55-s − 12·59-s − 4·61-s + 6·65-s − 7·67-s − 6·71-s + 73-s − 6·77-s + 19·79-s − 18·83-s + 9·85-s + 6·89-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 0.755·7-s − 0.904·11-s − 0.554·13-s − 0.727·17-s + 0.688·19-s − 1.87·23-s − 1.11·29-s − 0.718·31-s − 1.01·35-s − 0.937·41-s + 0.762·43-s − 1.31·47-s − 1.57·49-s − 0.412·53-s + 1.21·55-s − 1.56·59-s − 0.512·61-s + 0.744·65-s − 0.855·67-s − 0.712·71-s + 0.117·73-s − 0.683·77-s + 2.13·79-s − 1.97·83-s + 0.976·85-s + 0.635·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1971216 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1971216 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.170990449002618408949115550110, −9.127668641372333868128385474050, −8.242049139397797810929312232866, −8.068271856751349530769317281343, −7.72076400875542773143032118716, −7.68557484249060732332764896365, −7.00941699965204337380847414721, −6.61747023784168790747845727679, −5.91762257961329957573345362985, −5.67784640855690457163003189071, −4.92710433281573828647292322949, −4.80692711665144772153765495655, −4.20548974431761864214088935941, −3.80089156441554848134430383586, −3.29848760807981930369072729166, −2.74347357420448619178518541704, −1.91990089533593992240366673691, −1.62385647385633735947417246016, 0, 0,
1.62385647385633735947417246016, 1.91990089533593992240366673691, 2.74347357420448619178518541704, 3.29848760807981930369072729166, 3.80089156441554848134430383586, 4.20548974431761864214088935941, 4.80692711665144772153765495655, 4.92710433281573828647292322949, 5.67784640855690457163003189071, 5.91762257961329957573345362985, 6.61747023784168790747845727679, 7.00941699965204337380847414721, 7.68557484249060732332764896365, 7.72076400875542773143032118716, 8.068271856751349530769317281343, 8.242049139397797810929312232866, 9.127668641372333868128385474050, 9.170990449002618408949115550110