Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 141 x^{2} + 708 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.549816590759$, $\pm0.715010389924$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5593393.1 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
Isomorphism classes: | 40 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4343$ | $12607729$ | $41929893056$ | $146838399521113$ | $511134778930931063$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $3620$ | $204156$ | $12118020$ | $714949512$ | $42180524534$ | $2488651834104$ | $146830414556548$ | $8662995964664676$ | $511116754582672580$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=57 x^6+26 x^5+7 x^4+14 x^3+27 x^2+11 x+18$
- $y^2=41 x^6+10 x^5+6 x^4+14 x^3+48 x^2+44 x+39$
- $y^2=48 x^6+15 x^5+20 x^4+16 x^3+54 x^2+53 x+11$
- $y^2=49 x^6+x^5+9 x^4+58 x^3+38 x^2+38 x+20$
- $y^2=31 x^6+51 x^5+22 x^4+42 x^3+28 x^2+10 x+41$
- $y^2=7 x^6+32 x^5+52 x^4+28 x^3+44 x^2+16 x+3$
- $y^2=3 x^6+9 x^5+40 x^4+41 x^3+6 x^2+51 x+2$
- $y^2=13 x^6+19 x^5+55 x^4+8 x^3+33 x^2+38 x+12$
- $y^2=21 x^6+8 x^5+48 x^4+56 x^3+11 x^2+54 x+54$
- $y^2=8 x^6+38 x^5+44 x^4+34 x^3+3 x^2+12 x+4$
- $y^2=6 x^6+35 x^5+5 x^4+21 x^3+28 x^2+13 x+55$
- $y^2=16 x^6+14 x^5+48 x^4+35 x^3+5 x^2+23 x+53$
- $y^2=38 x^6+45 x^5+2 x^4+14 x^3+3 x^2+39 x+54$
- $y^2=45 x^6+46 x^5+32 x^4+43 x^3+55 x^2+49 x+32$
- $y^2=6 x^6+6 x^5+38 x^4+9 x^3+14 x^2+43 x+17$
- $y^2=39 x^6+14 x^5+19 x^4+17 x^3+46 x^2+27 x+35$
- $y^2=37 x^6+19 x^5+2 x^4+40 x^3+43 x^2+49 x+50$
- $y^2=54 x^6+29 x^5+47 x^3+31 x^2+46 x+4$
- $y^2=8 x^6+13 x^5+40 x^4+16 x^3+16 x^2+31$
- $y^2=58 x^6+6 x^5+14 x^4+7 x^3+4 x^2+54 x+47$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.5593393.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.am_fl | $2$ | (not in LMFDB) |