-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4343, 'abvar_counts': [4343, 12607729, 41929893056, 146838399521113, 511134778930931063, 1779197034082536472576, 6193387082134085719562687, 21559174022962071201763858473, 75047497818914699612585616251072, 261240336159856336845651744576208369], 'abvar_counts_str': '4343 12607729 41929893056 146838399521113 511134778930931063 1779197034082536472576 6193387082134085719562687 21559174022962071201763858473 75047497818914699612585616251072 261240336159856336845651744576208369 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.549816590759454, 0.715010389924448], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 72, 'curve_counts': [72, 3620, 204156, 12118020, 714949512, 42180524534, 2488651834104, 146830414556548, 8662995964664676, 511116754582672580], 'curve_counts_str': '72 3620 204156 12118020 714949512 42180524534 2488651834104 146830414556548 8662995964664676 511116754582672580 ', 'curves': ['y^2=57*x^6+26*x^5+7*x^4+14*x^3+27*x^2+11*x+18', 'y^2=41*x^6+10*x^5+6*x^4+14*x^3+48*x^2+44*x+39', 'y^2=48*x^6+15*x^5+20*x^4+16*x^3+54*x^2+53*x+11', 'y^2=49*x^6+x^5+9*x^4+58*x^3+38*x^2+38*x+20', 'y^2=31*x^6+51*x^5+22*x^4+42*x^3+28*x^2+10*x+41', 'y^2=7*x^6+32*x^5+52*x^4+28*x^3+44*x^2+16*x+3', 'y^2=3*x^6+9*x^5+40*x^4+41*x^3+6*x^2+51*x+2', 'y^2=13*x^6+19*x^5+55*x^4+8*x^3+33*x^2+38*x+12', 'y^2=21*x^6+8*x^5+48*x^4+56*x^3+11*x^2+54*x+54', 'y^2=8*x^6+38*x^5+44*x^4+34*x^3+3*x^2+12*x+4', 'y^2=6*x^6+35*x^5+5*x^4+21*x^3+28*x^2+13*x+55', 'y^2=16*x^6+14*x^5+48*x^4+35*x^3+5*x^2+23*x+53', 'y^2=38*x^6+45*x^5+2*x^4+14*x^3+3*x^2+39*x+54', 'y^2=45*x^6+46*x^5+32*x^4+43*x^3+55*x^2+49*x+32', 'y^2=6*x^6+6*x^5+38*x^4+9*x^3+14*x^2+43*x+17', 'y^2=39*x^6+14*x^5+19*x^4+17*x^3+46*x^2+27*x+35', 'y^2=37*x^6+19*x^5+2*x^4+40*x^3+43*x^2+49*x+50', 'y^2=54*x^6+29*x^5+47*x^3+31*x^2+46*x+4', 'y^2=8*x^6+13*x^5+40*x^4+16*x^3+16*x^2+31', 'y^2=58*x^6+6*x^5+14*x^4+7*x^3+4*x^2+54*x+47', 'y^2=6*x^6+18*x^5+31*x^4+35*x^3+2*x^2+5*x+45', 'y^2=50*x^6+6*x^5+12*x^4+47*x^3+x^2+18*x+46', 'y^2=10*x^6+16*x^5+6*x^4+11*x^3+49*x^2+25*x+16', 'y^2=55*x^6+32*x^5+39*x^4+56*x^3+44*x^2+35*x+47', 'y^2=58*x^6+57*x^5+32*x^4+44*x^3+9*x^2+35*x+14', 'y^2=21*x^6+x^5+31*x^4+40*x^3+32*x^2+54*x+48', 'y^2=50*x^6+38*x^5+30*x^4+12*x^3+14*x^2+34*x+26', 'y^2=5*x^6+4*x^5+10*x^4+15*x^3+14*x^2+37*x+35', 'y^2=16*x^6+4*x^5+15*x^4+48*x^3+30*x^2+49*x+38', 'y^2=24*x^6+13*x^5+3*x^4+5*x^3+42*x^2+3*x+4', 'y^2=46*x^6+39*x^4+50*x^3+36*x^2+8*x+6', 'y^2=16*x^6+20*x^5+52*x^4+40*x^3+22*x^2+42*x+34', 'y^2=43*x^6+18*x^5+6*x^4+51*x^3+43*x^2+46*x+58', 'y^2=44*x^6+44*x^5+21*x^4+50*x^3+30*x^2+40*x+33', 'y^2=3*x^6+24*x^5+31*x^4+55*x^3+44*x^2+39*x+16', 'y^2=7*x^6+22*x^5+12*x^4+48*x^3+26*x^2+42*x+2', 'y^2=7*x^6+58*x^5+56*x^4+22*x^3+40*x^2+25*x+20', 'y^2=42*x^6+x^5+42*x^4+3*x^2+11*x+32', 'y^2=57*x^6+22*x^5+53*x^4+33*x^3+28*x^2+45*x+39', 'y^2=6*x^6+22*x^5+21*x^4+42*x^3+43*x^2+58*x+56'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.5593393.1'], 'geometric_splitting_field': '4.0.5593393.1', 'geometric_splitting_polynomials': [[2092, -94, 95, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 40, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 40, 'label': '2.59.m_fl', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.5593393.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 23, 1, 2], [1, 29, 1, 20]], 'poly': [1, 12, 141, 708, 3481], 'poly_str': '1 12 141 708 3481 ', 'primitive_models': [], 'principal_polarization_count': 40, 'q': 59, 'real_poly': [1, 12, 23], 'simple_distinct': ['2.59.m_fl'], 'simple_factors': ['2.59.m_flA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2+5*F+2*V+29'], 'size': 40, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.5593393.1', 'splitting_polynomials': [[2092, -94, 95, -2, 1]], 'twist_count': 2, 'twists': [['2.59.am_fl', '2.3481.fi_oox', 2]], 'weak_equivalence_count': 2, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 20, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 33097, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F^2+5*F+2*V+29']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.59.m_fl', 'extension_degree': 1, 'extension_label': '2.59.m_fl', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.5593393.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.59.m_fl', 'galois_group': '4T3', 'places': [['3', '5', '1', '0'], ['50', '7', '58', '0']]}