L(s) = 1 | − 3-s + 5-s − 5·7-s − 9-s − 2·11-s − 15-s + 3·17-s + 4·19-s + 5·21-s − 2·23-s − 5·25-s − 2·29-s − 2·31-s + 2·33-s − 5·35-s − 15·37-s − 16·41-s − 15·43-s − 45-s + 11·47-s + 9·49-s − 3·51-s + 8·53-s − 2·55-s − 4·57-s − 20·59-s + 14·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 1.88·7-s − 1/3·9-s − 0.603·11-s − 0.258·15-s + 0.727·17-s + 0.917·19-s + 1.09·21-s − 0.417·23-s − 25-s − 0.371·29-s − 0.359·31-s + 0.348·33-s − 0.845·35-s − 2.46·37-s − 2.49·41-s − 2.28·43-s − 0.149·45-s + 1.60·47-s + 9/7·49-s − 0.420·51-s + 1.09·53-s − 0.269·55-s − 0.529·57-s − 2.60·59-s + 1.79·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1827904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1827904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.595795679081987814530924330338, −9.054327494261541987045159112323, −8.626208959892337578155213827854, −8.315947493781645023799343228080, −7.69557165170746804820670841053, −7.12415532086964263361055871408, −7.02438097256606195514184623585, −6.48546828845935373415850598658, −6.01192676264472045502532537536, −5.66211951164486702805768400366, −5.32374685837033469222583888806, −5.05477510258922513636417059246, −4.13490036843377061867703674435, −3.60220851753558403078051680386, −3.17360351017457894252245244745, −2.98095114854347135050261094381, −1.99598667579343256841738245594, −1.48640200281167504830267848980, 0, 0,
1.48640200281167504830267848980, 1.99598667579343256841738245594, 2.98095114854347135050261094381, 3.17360351017457894252245244745, 3.60220851753558403078051680386, 4.13490036843377061867703674435, 5.05477510258922513636417059246, 5.32374685837033469222583888806, 5.66211951164486702805768400366, 6.01192676264472045502532537536, 6.48546828845935373415850598658, 7.02438097256606195514184623585, 7.12415532086964263361055871408, 7.69557165170746804820670841053, 8.315947493781645023799343228080, 8.626208959892337578155213827854, 9.054327494261541987045159112323, 9.595795679081987814530924330338