Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 98 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.350507393572$, $\pm0.649492606428$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{17}, \sqrt{-66})\) |
Galois group: | $C_2^2$ |
Jacobians: | $424$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6988$ | $48832144$ | $326939289196$ | $2252688526550016$ | $15516041187080280268$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $7086$ | $571788$ | $47466670$ | $3939040644$ | $326938205022$ | $27136050989628$ | $2252292387127774$ | $186940255267540404$ | $15516041186954707086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 424 curves (of which all are hyperelliptic):
- $y^2=36 x^6+69 x^5+22 x^4+65 x^3+10 x^2+52$
- $y^2=72 x^6+55 x^5+44 x^4+47 x^3+20 x^2+21$
- $y^2=30 x^6+69 x^5+10 x^4+29 x^3+58 x^2+37 x+50$
- $y^2=48 x^6+52 x^5+25 x^4+61 x^3+65 x^2+45 x+6$
- $y^2=13 x^6+21 x^5+50 x^4+39 x^3+47 x^2+7 x+12$
- $y^2=48 x^6+57 x^5+78 x^4+21 x^3+11 x^2+64 x+46$
- $y^2=13 x^6+31 x^5+73 x^4+42 x^3+22 x^2+45 x+9$
- $y^2=47 x^6+3 x^5+82 x^4+69 x^3+29 x^2+51 x+32$
- $y^2=11 x^6+6 x^5+81 x^4+55 x^3+58 x^2+19 x+64$
- $y^2=2 x^6+72 x^5+58 x^4+76 x^3+82 x^2+60 x+46$
- $y^2=4 x^6+61 x^5+33 x^4+69 x^3+81 x^2+37 x+9$
- $y^2=63 x^6+21 x^5+59 x^4+54 x^3+56 x^2+72 x+6$
- $y^2=43 x^6+42 x^5+35 x^4+25 x^3+29 x^2+61 x+12$
- $y^2=41 x^6+23 x^4+46 x^3+13 x^2+76 x+18$
- $y^2=82 x^6+46 x^4+9 x^3+26 x^2+69 x+36$
- $y^2=27 x^6+72 x^5+74 x^4+10 x^3+34 x^2+11 x+51$
- $y^2=54 x^6+61 x^5+65 x^4+20 x^3+68 x^2+22 x+19$
- $y^2=52 x^6+17 x^5+31 x^4+10 x^3+22 x^2+69 x+71$
- $y^2=21 x^6+34 x^5+62 x^4+20 x^3+44 x^2+55 x+59$
- $y^2=32 x^6+28 x^5+32 x^4+74 x^3+78 x^2+66 x+20$
- and 404 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{17}, \sqrt{-66})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.du 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1122}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.a_adu | $4$ | (not in LMFDB) |