Properties

Label 2.5.ab_g
Base Field $\F_{5}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 - x + 6 x^{2} - 5 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.305864691812$, $\pm0.613537726837$
Angle rank:  $2$ (numerical)
Number field:  4.0.68204.1
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 26 988 15704 411008 10080226 238700800 6038137586 152975533568 3818220322904 95371820488828

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 37 128 657 3225 15274 77285 391617 1954928 9766077

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 4.0.68204.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.b_g$2$2.25.l_cy