Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 2 x + 30 x^{2} + 46 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.394431612789$, $\pm0.679357211062$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2312.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $52$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $608$ | $311296$ | $147605984$ | $78426669056$ | $41404387764448$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $26$ | $586$ | $12134$ | $280254$ | $6432906$ | $148002346$ | $3404994710$ | $78311593278$ | $1801149729338$ | $41426508796746$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=15 x^6+8 x^5+18 x^4+17 x^3+12 x^2+4 x+13$
- $y^2=18 x^6+2 x^5+6 x^4+8 x^3+22 x+16$
- $y^2=16 x^6+3 x^5+13 x^4+20 x^3+20 x^2+15 x+6$
- $y^2=13 x^6+3 x^5+13 x^4+15 x^3+22 x^2+16 x+16$
- $y^2=20 x^5+21 x^4+13 x^2+19 x+7$
- $y^2=6 x^6+2 x^5+x^4+5 x^3+14 x^2+10 x+20$
- $y^2=16 x^6+10 x^5+2 x^4+17 x^3+11 x^2+7 x$
- $y^2=8 x^6+5 x^4+2 x^3+9 x^2+14 x+19$
- $y^2=17 x^6+4 x^5+20 x^4+13 x^3+17 x^2+4 x+3$
- $y^2=21 x^6+12 x^5+13 x^4+17 x^3+2 x^2+3 x$
- $y^2=10 x^6+9 x^5+4 x^4+16 x^3+14 x^2+8 x+15$
- $y^2=13 x^6+6 x^5+18 x^3+11 x^2+10 x+4$
- $y^2=x^6+16 x^5+10 x^4+5 x^3+2 x^2+17 x+12$
- $y^2=5 x^6+13 x^5+x^4+14 x^3+20 x^2+19 x+8$
- $y^2=20 x^6+5 x^5+12 x^4+6 x^3+5 x^2+16 x+5$
- $y^2=15 x^6+19 x^5+5 x^4+14 x^3+2 x^2+5 x+1$
- $y^2=3 x^6+14 x^5+17 x^4+4 x^3+10 x^2+14 x+4$
- $y^2=10 x^5+16 x^4+2 x^3+13 x^2+12 x+2$
- $y^2=21 x^6+17 x^4+14 x^3+16 x^2+4 x+4$
- $y^2=19 x^6+22 x^5+10 x^4+19 x^3+20 x^2+10 x+8$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 4.0.2312.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ac_be | $2$ | (not in LMFDB) |