Properties

Label 2.23.c_be
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + 30 x^{2} + 46 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.394431612789$, $\pm0.679357211062$
Angle rank:  $2$ (numerical)
Number field:  4.0.2312.1
Galois group:  $D_{4}$
Jacobians:  $52$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $608$ $311296$ $147605984$ $78426669056$ $41404387764448$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $586$ $12134$ $280254$ $6432906$ $148002346$ $3404994710$ $78311593278$ $1801149729338$ $41426508796746$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 4.0.2312.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ac_be$2$(not in LMFDB)