L(s) = 1 | + 2-s + 3·3-s − 2·4-s + 2·5-s + 3·6-s + 2·7-s − 3·8-s + 2·9-s + 2·10-s − 11-s − 6·12-s − 2·13-s + 2·14-s + 6·15-s + 16-s + 17-s + 2·18-s − 2·19-s − 4·20-s + 6·21-s − 22-s − 2·23-s − 9·24-s − 7·25-s − 2·26-s − 6·27-s − 4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.73·3-s − 4-s + 0.894·5-s + 1.22·6-s + 0.755·7-s − 1.06·8-s + 2/3·9-s + 0.632·10-s − 0.301·11-s − 1.73·12-s − 0.554·13-s + 0.534·14-s + 1.54·15-s + 1/4·16-s + 0.242·17-s + 0.471·18-s − 0.458·19-s − 0.894·20-s + 1.30·21-s − 0.213·22-s − 0.417·23-s − 1.83·24-s − 7/5·25-s − 0.392·26-s − 1.15·27-s − 0.755·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17689 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.226521401\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.226521401\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62025060895511532214578037311, −13.45486519438234806445427367698, −12.71041944691866674160718347910, −12.25370563588666584498674988050, −11.71265111051365992000621233065, −10.85844929122760418066354542346, −10.22529099332162626706503366805, −9.766895861616560528521506473258, −9.053331509949530621405899261300, −8.994154382011203061738546809188, −8.262282164725696725643339386455, −7.936094927570823561051604323227, −7.25895705220832828808564338575, −6.20826058264757330489467877805, −5.40571077549911655311343714364, −5.19434758733118900016763246405, −4.05900994656425477202054392423, −3.79392358318710283826542288661, −2.62047472811705218653323646518, −2.12384877547305281217510389717,
2.12384877547305281217510389717, 2.62047472811705218653323646518, 3.79392358318710283826542288661, 4.05900994656425477202054392423, 5.19434758733118900016763246405, 5.40571077549911655311343714364, 6.20826058264757330489467877805, 7.25895705220832828808564338575, 7.936094927570823561051604323227, 8.262282164725696725643339386455, 8.994154382011203061738546809188, 9.053331509949530621405899261300, 9.766895861616560528521506473258, 10.22529099332162626706503366805, 10.85844929122760418066354542346, 11.71265111051365992000621233065, 12.25370563588666584498674988050, 12.71041944691866674160718347910, 13.45486519438234806445427367698, 13.62025060895511532214578037311