Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x + 103 x^{2} + 518 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.566626788045$, $\pm0.892012654627$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.58025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $32$ |
Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2005$ | $1886705$ | $2564346880$ | $3507960040025$ | $4809439769435125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $1380$ | $50626$ | $1871748$ | $69356292$ | $2565803190$ | $94930820596$ | $3512483252868$ | $129961738775962$ | $4808584437568900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=11 x^6+36 x^5+x^4+x^3+35 x^2+3$
- $y^2=29 x^6+11 x^5+7 x^4+19 x^3+17 x^2+6 x+25$
- $y^2=3 x^6+32 x^5+20 x^4+34 x^3+20 x^2+24 x+9$
- $y^2=2 x^6+9 x^5+17 x^4+16 x^3+19 x+27$
- $y^2=6 x^6+10 x^5+4 x^4+31 x^3+21 x^2+8 x+28$
- $y^2=9 x^6+5 x^5+20 x^4+19 x^3+30 x^2+29 x+19$
- $y^2=26 x^6+33 x^5+23 x^4+3 x^3+34 x^2+10 x+7$
- $y^2=25 x^6+17 x^5+19 x^4+28 x^3+14 x^2+32 x+12$
- $y^2=18 x^6+23 x^5+8 x^3+28 x^2+12 x+31$
- $y^2=21 x^6+28 x^5+35 x^4+13 x^3+36 x^2+x+3$
- $y^2=36 x^6+20 x^5+4 x^4+25 x^3+9 x^2+7$
- $y^2=19 x^6+26 x^5+11 x^4+x^3+9 x^2+20 x+32$
- $y^2=8 x^6+13 x^5+x^4+19 x^3+29 x^2+5 x+9$
- $y^2=5 x^6+23 x^4+17 x^3+31 x^2+7 x+32$
- $y^2=26 x^6+24 x^5+30 x^4+32 x^3+9 x^2+10 x+27$
- $y^2=19 x^6+12 x^5+13 x^4+5 x^3+9 x^2+36$
- $y^2=3 x^6+5 x^5+4 x^4+14 x^3+31 x^2+34 x+16$
- $y^2=18 x^6+19 x^5+21 x^4+29 x^3+16 x^2+22 x+9$
- $y^2=8 x^6+3 x^5+23 x^4+10 x^3+16 x^2+14 x+7$
- $y^2=x^6+30 x^5+10 x^4+33 x^3+32 x^2+34 x+27$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is 4.0.58025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.ao_dz | $2$ | (not in LMFDB) |