Properties

Label 133.2.a.c
Level $133$
Weight $2$
Character orbit 133.a
Self dual yes
Analytic conductor $1.062$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [133,2,Mod(1,133)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(133, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("133.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.06201034688\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( - \beta + 2) q^{3} + (\beta - 1) q^{4} + q^{5} + (\beta - 1) q^{6} + q^{7} + ( - 2 \beta + 1) q^{8} + ( - 3 \beta + 2) q^{9} + \beta q^{10} + (\beta - 1) q^{11} + (2 \beta - 3) q^{12}+ \cdots + (2 \beta - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} + 2 q^{5} - q^{6} + 2 q^{7} + q^{9} + q^{10} - q^{11} - 4 q^{12} - 2 q^{13} + q^{14} + 3 q^{15} - 3 q^{16} + q^{17} - 7 q^{18} - 2 q^{19} - q^{20} + 3 q^{21} + 2 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 2.61803 −1.61803 1.00000 −1.61803 1.00000 2.23607 3.85410 −0.618034
1.2 1.61803 0.381966 0.618034 1.00000 0.618034 1.00000 −2.23607 −2.85410 1.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 133.2.a.c 2
3.b odd 2 1 1197.2.a.g 2
4.b odd 2 1 2128.2.a.c 2
5.b even 2 1 3325.2.a.m 2
7.b odd 2 1 931.2.a.j 2
7.c even 3 2 931.2.f.d 4
7.d odd 6 2 931.2.f.e 4
8.b even 2 1 8512.2.a.f 2
8.d odd 2 1 8512.2.a.bb 2
19.b odd 2 1 2527.2.a.a 2
21.c even 2 1 8379.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
133.2.a.c 2 1.a even 1 1 trivial
931.2.a.j 2 7.b odd 2 1
931.2.f.d 4 7.c even 3 2
931.2.f.e 4 7.d odd 6 2
1197.2.a.g 2 3.b odd 2 1
2128.2.a.c 2 4.b odd 2 1
2527.2.a.a 2 19.b odd 2 1
3325.2.a.m 2 5.b even 2 1
8379.2.a.w 2 21.c even 2 1
8512.2.a.f 2 8.b even 2 1
8512.2.a.bb 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(133))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$29$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$31$ \( T^{2} + T - 101 \) Copy content Toggle raw display
$37$ \( T^{2} + 14T + 29 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T - 11 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 11 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$59$ \( T^{2} - 20T + 95 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T - 71 \) Copy content Toggle raw display
$67$ \( T^{2} - 11T - 31 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$73$ \( T^{2} + 7T - 49 \) Copy content Toggle raw display
$79$ \( T^{2} - 20 \) Copy content Toggle raw display
$83$ \( T^{2} - 13T + 31 \) Copy content Toggle raw display
$89$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$97$ \( T^{2} - 6T - 11 \) Copy content Toggle raw display
show more
show less