L(s) = 1 | − 6·9-s − 6·25-s + 2·37-s − 20·41-s − 14·49-s − 28·53-s + 12·73-s + 27·81-s + 4·101-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 2·9-s − 6/5·25-s + 0.328·37-s − 3.12·41-s − 2·49-s − 3.84·53-s + 1.40·73-s + 3·81-s + 0.398·101-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5651367930\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5651367930\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50948119523858406985507295777, −9.463178162563749165658667546576, −9.329791819739600874960477252523, −8.627403054786748208048664375201, −8.248493668774160775968796430180, −8.001799447951367241330174869746, −7.82940300944463022937953364262, −6.88174859611327535839881687718, −6.63852211821145231821294354239, −6.17053948069340967271182253313, −5.82067515382681722509550802376, −5.26203522072472271435850933361, −4.95098240246475257944088347505, −4.46607885112938751201893603231, −3.61987018759147037392354195495, −3.16066683988079724792026570252, −3.04316555091601773050747185261, −2.03548828488710953314284376557, −1.68261929239363820604726831753, −0.30734160942371176695811949259,
0.30734160942371176695811949259, 1.68261929239363820604726831753, 2.03548828488710953314284376557, 3.04316555091601773050747185261, 3.16066683988079724792026570252, 3.61987018759147037392354195495, 4.46607885112938751201893603231, 4.95098240246475257944088347505, 5.26203522072472271435850933361, 5.82067515382681722509550802376, 6.17053948069340967271182253313, 6.63852211821145231821294354239, 6.88174859611327535839881687718, 7.82940300944463022937953364262, 8.001799447951367241330174869746, 8.248493668774160775968796430180, 8.627403054786748208048664375201, 9.329791819739600874960477252523, 9.463178162563749165658667546576, 10.50948119523858406985507295777