L(s) = 1 | + 2·2-s + 2·4-s − 2·11-s − 4·16-s + 4·17-s − 6·19-s − 4·22-s + 6·25-s − 8·32-s + 8·34-s − 12·38-s + 4·41-s − 6·43-s − 4·44-s + 2·49-s + 12·50-s + 8·59-s − 8·64-s + 16·67-s + 8·68-s + 20·73-s − 12·76-s + 8·82-s − 12·86-s + 18·89-s + 4·97-s + 4·98-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.603·11-s − 16-s + 0.970·17-s − 1.37·19-s − 0.852·22-s + 6/5·25-s − 1.41·32-s + 1.37·34-s − 1.94·38-s + 0.624·41-s − 0.914·43-s − 0.603·44-s + 2/7·49-s + 1.69·50-s + 1.04·59-s − 64-s + 1.95·67-s + 0.970·68-s + 2.34·73-s − 1.37·76-s + 0.883·82-s − 1.29·86-s + 1.90·89-s + 0.406·97-s + 0.404·98-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.604548099\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.604548099\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.445636208819054692369028240041, −7.84916007498563660047536635960, −7.41242099124438021334479997520, −6.71754597367136890917087845876, −6.56616669516481251036150077540, −6.04309762679119616046490997407, −5.39268188712630011795781335023, −5.19026750134360559717433846293, −4.68204345157445926411652040057, −4.14761586270770494020252094484, −3.57647021144405895784857564306, −3.19972028796176887216562390655, −2.43701813971856651479317882998, −2.05253171243738248999995455722, −0.75189929987229785960152446342,
0.75189929987229785960152446342, 2.05253171243738248999995455722, 2.43701813971856651479317882998, 3.19972028796176887216562390655, 3.57647021144405895784857564306, 4.14761586270770494020252094484, 4.68204345157445926411652040057, 5.19026750134360559717433846293, 5.39268188712630011795781335023, 6.04309762679119616046490997407, 6.56616669516481251036150077540, 6.71754597367136890917087845876, 7.41242099124438021334479997520, 7.84916007498563660047536635960, 8.445636208819054692369028240041