| L(s) = 1 | + 3-s + 9-s − 12·11-s − 6·17-s − 4·19-s − 3·25-s + 27-s − 12·33-s + 6·41-s − 10·43-s − 5·49-s − 6·51-s − 4·57-s − 12·59-s − 15·67-s + 3·73-s − 3·75-s + 81-s + 6·83-s − 2·97-s − 12·99-s − 24·107-s − 12·113-s + 86·121-s + 6·123-s + 127-s − 10·129-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 3.61·11-s − 1.45·17-s − 0.917·19-s − 3/5·25-s + 0.192·27-s − 2.08·33-s + 0.937·41-s − 1.52·43-s − 5/7·49-s − 0.840·51-s − 0.529·57-s − 1.56·59-s − 1.83·67-s + 0.351·73-s − 0.346·75-s + 1/9·81-s + 0.658·83-s − 0.203·97-s − 1.20·99-s − 2.32·107-s − 1.12·113-s + 7.81·121-s + 0.541·123-s + 0.0887·127-s − 0.880·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.36321726317807501184616380221, −6.70268789390920637374853175540, −6.37970033351989965088816874826, −5.85612955700901692580362736561, −5.32089518185112969883117040897, −5.05259456083182728505696851730, −4.55532820773605565791763762659, −4.25517173980391237504918577673, −3.47137407265729972950729761473, −2.93726929504042665544471613466, −2.51920889196178102493772707276, −2.26285676637873998336581522478, −1.57920733252426140993859887263, 0, 0,
1.57920733252426140993859887263, 2.26285676637873998336581522478, 2.51920889196178102493772707276, 2.93726929504042665544471613466, 3.47137407265729972950729761473, 4.25517173980391237504918577673, 4.55532820773605565791763762659, 5.05259456083182728505696851730, 5.32089518185112969883117040897, 5.85612955700901692580362736561, 6.37970033351989965088816874826, 6.70268789390920637374853175540, 7.36321726317807501184616380221